A322118 Number of non-isomorphic connected multiset partitions of weight n with no singletons that cannot be capped by a tree.
1, 1, 2, 3, 7, 11, 29, 55, 155, 386, 1171
Offset: 0
Examples
The multiset partition C = {{1,1},{1,2,3},{2,3,3}} is not a tree but has the cap {{1,1},{1,2,3,3}} which is a tree, so C is not counted under a(8). Non-isomorphic representatives of the a(2) = 2 through a(6) = 29 multiset partitions: {{1,1}} {{1,1,1}} {{1,1,1,1}} {{1,1,1,1,1}} {{1,1,1,1,1,1}} {{1,2}} {{1,2,2}} {{1,1,2,2}} {{1,1,2,2,2}} {{1,1,1,2,2,2}} {{1,2,3}} {{1,2,2,2}} {{1,2,2,2,2}} {{1,1,2,2,2,2}} {{1,2,3,3}} {{1,2,2,3,3}} {{1,1,2,2,3,3}} {{1,2,3,4}} {{1,2,3,3,3}} {{1,2,2,2,2,2}} {{1,1},{1,1}} {{1,2,3,4,4}} {{1,2,2,3,3,3}} {{1,2},{1,2}} {{1,2,3,4,5}} {{1,2,3,3,3,3}} {{1,1},{1,1,1}} {{1,2,3,3,4,4}} {{1,2},{1,2,2}} {{1,2,3,4,4,4}} {{2,2},{1,2,2}} {{1,2,3,4,5,5}} {{2,3},{1,2,3}} {{1,2,3,4,5,6}} {{1,1},{1,1,1,1}} {{1,1,1},{1,1,1}} {{1,1,2},{1,2,2}} {{1,2},{1,1,2,2}} {{1,2},{1,2,2,2}} {{1,2},{1,2,3,3}} {{1,2,2},{1,2,2}} {{1,2,3},{1,2,3}} {{1,2,3},{2,3,3}} {{1,3,4},{2,3,4}} {{2,2},{1,1,2,2}} {{2,2},{1,2,2,2}} {{2,3},{1,2,3,3}} {{3,3},{1,2,3,3}} {{3,4},{1,2,3,4}} {{1,1},{1,1},{1,1}} {{1,2},{1,2},{1,2}} {{1,2},{1,3},{2,3}}
Links
- Gus Wiseman, Every Clutter Is a Tree of Blobs, The Mathematica Journal, Vol. 19, 2017.
Crossrefs
The version with singletons is A322110.
Extensions
Definition corrected by Gus Wiseman, Feb 05 2021
Comments