A322135 Table of truncated square pyramid numbers, read by antidiagonals.
1, 4, 5, 9, 13, 14, 16, 25, 29, 30, 25, 41, 50, 54, 55, 36, 61, 77, 86, 90, 91, 49, 85, 110, 126, 135, 139, 140, 64, 113, 149, 174, 190, 199, 203, 204, 81, 145, 194, 230, 255, 271, 280, 284, 285, 100, 181, 245, 294, 330, 355, 371, 380, 384, 385, 121, 221, 302
Offset: 1
Examples
The 17th term is entry 2 on antidiagonal 6, so we sum two terms: 6^2 + 5^2 = 61. Table begins: 1 5 14 30 55 91 140 204 ... 4 13 29 54 90 139 203 ... 9 25 50 86 135 199 ... 16 41 77 126 190 ... 25 61 110 174 ... 36 85 149 ... 49 113 ... 64 ... ...
Programs
-
Mathematica
T[n_,k_] = Sum[(n+i)^2, {i,0,k-1}]; Table[T[n-k+1, k], {n,1,10}, {k,1,n}] // Flatten (* Amiram Eldar, Nov 28 2018 *) f[n_] := Table[SeriesCoefficient[-((y (y (1 + y) + x (1 - 2 y - 3 y^2) + x^2 (1 - 3 y + 4 y^2)))/((-1 + x)^3 (-1 + y)^4)) , {x, 0, i + 1 - j}, {y, 0, j}], {i, n, n}, {j, 1, n}]; Flatten[Array[f, 10]] (* Stefano Spezia, Nov 28 2018 *)
Formula
T(n,k) = n^2 + (n+1)^2 + ... + (n+k-1)^2 = A000330(n + k - 1) - A000330(n - 1) = T(n, k) = k*n^2 + (k^2 - k)*n + (1/3*k^3 - 1/2*k^2 + 1/6*k)
G.f.: -y*(y*(1 + y) + x*(1 - 2*y - 3*y^2) + x^2*(1 - 3*y + 4*y^2))/((- 1 + x)^3*(- 1 + y)^4). - Stefano Spezia, Nov 28 2018
Comments