cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322152 Number of labeled connected multigraphs with loops with n edges (the vertices are {1,2,...,k} for some k).

Original entry on oeis.org

1, 2, 7, 39, 314, 3359, 45000, 725269, 13670256, 295099184, 7179749707, 194399095705, 5797793490859, 188855813757729, 6671188010874785, 254007814638737649, 10370334196814589256, 451923738493729293016, 20937747226064522726151, 1027666505638118490940059
Offset: 0

Views

Author

Gus Wiseman, Nov 28 2018

Keywords

Crossrefs

Row sums of A322148. The unlabeled version is A007719.

Programs

  • Mathematica
    multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Table[Length[Select[multsubs[multsubs[Range[n+1],2],n],And[Union@@#==Range[Max@@Union@@#],Length[csm[#]]==1]&]],{n,5}]
  • PARI
    Connected(v)={my(u=vector(#v)); for(n=1, #u, u[n]=v[n] - sum(k=1, n-1, binomial(n-1, k)*v[k]*u[n-k])); u}
    seq(n)={Vec(vecsum(Connected(vector(2*n, j, 1/(1 - x + O(x*x^n))^binomial(j+1,2)))))} \\ Andrew Howroyd, Nov 28 2018

Extensions

Terms a(7) and beyond from Andrew Howroyd, Nov 28 2018