A322164 Numbers n > 1 such that phi(n) <= phi(k) + phi(n-k) for all 1 <= k <= n-1, where phi(n) is the Euler totient function (A000010).
2, 3, 4, 6, 10, 12, 18, 24, 30, 42, 60, 84, 90, 120, 150, 180, 210, 330, 390, 420, 630, 840, 1050, 1260, 1470, 1680, 1890, 2100, 2310, 2730, 3570, 3990, 4620, 5460, 6930, 8190, 9240, 10920, 11550, 13650, 13860, 16170, 18480, 20790, 23100, 25410, 27720, 30030
Offset: 1
Keywords
Examples
6 is in the sequence since phi(k) + phi(6-k) = 5, 3, 4, 3, 5 for k = 1 to 5 are all larger than phi(6) = 2.
References
- J. Sandor and B. Crstici, Handbook of Number Theory II, Springer Verlag, 2004, Chapter 3.3, p. 224.
Links
- C. A. Nicol, Problem E2590, The American Mathematical Monthly, Vol. 83, No. 4 (1976), p. 284, solution by Lorraine L. Foster, Vol. 84, No. 8 (1977), p. 654-655.
Programs
-
Mathematica
aQ[n_] := Module[{e=EulerPhi[n]}, LengthWhile[Range[1,n-1], EulerPhi[n-#] + EulerPhi[#] >= e &] == n-1]; Select[Range[2, 10000], aQ]
-
PARI
isok(n) = {if (n == 1, return(0)); my(t = eulerphi(n)); for (k=1, n-1, if (t > eulerphi(k) + eulerphi(n-k), return(0));); return (1);} \\ Michel Marcus, Nov 29 2018
Comments