A322175 Determinant of the symmetric n X n matrix M defined by M(i,j) = mu(gcd(i,j)) for 1 <= i,j <= n where mu is the Moebius function.
1, 1, -2, 4, 4, -8, -32, 64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
For n = 2, [ mu(1) mu(1) ] [ 1 1 ] the matrix is [ ] = [ ] [ mu(1) mu(2) ] [ 1 -1 ] so a(2) = -2.
References
- J.-M. De Koninck & A. Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 694 pp. 90, 297, Ellipses Paris 2004.
Programs
-
Mathematica
m[i_,j_] := MoebiusMu[GCD[i,j]]; a[n_] := Det[Table[m[i,j], {i,1,n}, {j,1,n}]]; Array[a, 30] (* Amiram Eldar, Dec 02 2018 *)
-
PARI
a(n) = matdet(matrix(n, n, i, j, moebius(gcd(i,j)))); \\ Michel Marcus, Dec 03 2018
Comments