cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322176 Triangle read by rows: The number of chord diagrams on 2n vertices with m marked chords.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 5, 8, 8, 5, 17, 39, 61, 39, 17, 79, 287, 556, 556, 287, 79, 554, 2792, 6910, 9058, 6910, 2792, 554, 5283, 34650, 103212, 171195, 171195, 103212, 34650, 5283, 65346, 510593, 1783325, 3559031, 4449494, 3559031, 1783325, 510593, 65346
Offset: 0

Views

Author

R. J. Mathar, Nov 30 2018

Keywords

Examples

			   1;
   1,   1;
   2,   2,   2;
   5,   8,   8,   5;
  17,  39,  61,  39,  17;
  79, 287, 556, 556, 287, 79;
		

Crossrefs

Cf. A054499.

Programs

  • PARI
    C(p, d)={sum(k=0, p\2, binomial(p, 2*k) * (d*(1+y^d))^k * if(d%2, p==2*k, (1+y^(d/2))^(p-2*k)) * (2*k)!/(2^k*k!))}
    R(n)={sum(k=0, n\2, binomial(n,2*k) * (1+y^2)^k * (1+y)^(n-2*k) * (2*k)!/k!)}
    row(n)={Vec(if(n==0, 1, (sumdiv(2*n, d, eulerphi(d)*C(2*n/d, d))/n + R(n) + (1+y)*R(n-1))/4))}
    { for(n=0, 8, print(row(n))) } \\ Andrew Howroyd, Dec 13 2018

Formula

T(n,m) = T(n,n-m).
T(n,0) = A054499(n).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 13 2018