A322176 Triangle read by rows: The number of chord diagrams on 2n vertices with m marked chords.
1, 1, 1, 2, 2, 2, 5, 8, 8, 5, 17, 39, 61, 39, 17, 79, 287, 556, 556, 287, 79, 554, 2792, 6910, 9058, 6910, 2792, 554, 5283, 34650, 103212, 171195, 171195, 103212, 34650, 5283, 65346, 510593, 1783325, 3559031, 4449494, 3559031, 1783325, 510593, 65346
Offset: 0
Examples
1; 1, 1; 2, 2, 2; 5, 8, 8, 5; 17, 39, 61, 39, 17; 79, 287, 556, 556, 287, 79;
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1274
- R. J. Mathar, Marked Chord Diagrams A322176
- R. J. Mathar, Feynman diagrams of the QED vacuum polarization, vixra:1901.0148 (2019)
Crossrefs
Cf. A054499.
Programs
-
PARI
C(p, d)={sum(k=0, p\2, binomial(p, 2*k) * (d*(1+y^d))^k * if(d%2, p==2*k, (1+y^(d/2))^(p-2*k)) * (2*k)!/(2^k*k!))} R(n)={sum(k=0, n\2, binomial(n,2*k) * (1+y^2)^k * (1+y)^(n-2*k) * (2*k)!/k!)} row(n)={Vec(if(n==0, 1, (sumdiv(2*n, d, eulerphi(d)*C(2*n/d, d))/n + R(n) + (1+y)*R(n-1))/4))} { for(n=0, 8, print(row(n))) } \\ Andrew Howroyd, Dec 13 2018
Formula
T(n,m) = T(n,n-m).
T(n,0) = A054499(n).
Extensions
Terms a(21) and beyond from Andrew Howroyd, Dec 13 2018