cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322186 G.f.: exp( Sum_{n>=1} A322185(n)*x^n/n ), where A322185(n) = sigma(2*n) * binomial(2*n,n)/2.

Original entry on oeis.org

1, 3, 15, 76, 357, 1662, 8203, 36609, 169800, 788024, 3586350, 15948147, 73761986, 324147729, 1454796651, 6544916640, 28902107643, 126842754933, 567156315794, 2468434955040, 10893525305088, 47854663427104, 208582052412240, 905923236202737, 3975385018556868, 17200981327476354, 74619131550054048, 323976744392754994, 1400917964875907424, 6031485491299656747
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2018

Keywords

Comments

Related series:
(1) Product_{n>=1} (1 - x^(2*n))/(1 - x^n)^3 = exp( Sum_{n>=1} sigma(2*n) * x^n/n ) (see formula of Joerg Arndt in A182818).
(2) C(x) = exp( Sum_{n>=1} binomial(2*n,n)/2 * x^n/n ), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
A322185(n) is also the coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - (x + y)^n) ).

Examples

			G.f.: A(x) = 1 + 3*x + 15*x^2 + 76*x^3 + 357*x^4 + 1662*x^5 + 8203*x^6 + 36609*x^7 + 169800*x^8 + 788024*x^9 + 3586350*x^10 + 15948147*x^11 + ...
such that
log(A(x)) = 3*x + 21*x^2/2 + 120*x^3/3 + 525*x^4/4 + 2268*x^5/5 + 12936*x^6/6 + 41184*x^7/7 + 199485*x^8/8 + 948090*x^9/9 + 3879876*x^10/10 + 12697776*x^11/11 + ... + A322185(n)*x^n/n + ...
RELATED SERIES.
A(x)^2 = 1 + 6*x + 39*x^2 + 242*x^3 + 1395*x^4 + 7746*x^5 + 42864*x^6 + 226560*x^7 + 1185417*x^8 + 6126642*x^9 + 31178598*x^10 + 156270312*x^11 + 780797727*x^12 + ...
where A(x)^2 = exp( Sum_{n>=1} sigma(2*n) * binomial(2*n,n) * x^n/n ).
		

Crossrefs

Programs

  • PARI
    {A322185(n) = sigma(2*n) * binomial(2*n,n)/2}
    {a(n) = polcoeff( exp( sum(m=1, n, A322185(m)*x^m/m ) +x*O(x^n) ), n) }
    for(n=0, 30, print1( a(n), ", ") )