cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322187 a(n) is the coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - x^(2*n-1) - y^(2*n-1)) ), for n >= 1.

Original entry on oeis.org

1, 3, 13, 35, 131, 471, 1723, 6435, 24349, 92393, 352727, 1352183, 5200313, 20058321, 77559203, 300540195, 1166803127, 4537569063, 17672631919, 68923264585, 269128942459, 1052049481893, 4116715363823, 16123801860855, 63205303219531, 247959266474091, 973469712897103, 3824345300380465, 15033633249770549, 59132290782710201, 232714176627630575, 916312070471295267, 3609714217009191161, 14226520737620288421
Offset: 1

Views

Author

Paul D. Hanna, Dec 07 2018

Keywords

Examples

			L.g.f.: L(x) = x + 3*x^2/2 + 13*x^3/3 + 35*x^4/4 + 131*x^5/5 + 471*x^6/6 + 1723*x^7/7 + 6435*x^8/8 + 24349*x^9/9 + 92393*x^10/10 + 352727*x^11/11 + 1352183*x^12/12 + ...
RELATED SERIES.
exp(L(x)) = 1 + x + 2*x^2 + 6*x^3 + 15*x^4 + 45*x^5 + 140*x^6 + 448*x^7 + 1483*x^8 + 5027*x^9 + 17311*x^10 + 60469*x^11 + 213678*x^12 + ... + A322188(n)*x^n + ...
The table of coefficients of x^n*y^k/(n+k) in
log( Product_{n>=1} 1/(1 - x^(2*n-1) - y^(2*n-1)) ) = (1*x + 1*y) + (1*x^2 + 2*x*y + 1*y^2)/2 + (4*x^3 + 3*x^2*y + 3*x*y^2 + 4*y^3)/3 + (1*x^4 + 4*x^3*y + 6*x^2*y^2 + 4*x*y^3 + 1*y^4)/4 + (6*x^5 + 5*x^4*y + 10*x^3*y^2 + 10*x^2*y^3 + 5*x*y^4 + 6*y^5)/5 + (4*x^6 + 6*x^5*y + 15*x^4*y^2 + 26*x^3*y^3 + 15*x^2*y^4 + 6*x*y^5 + 4*y^6)/6 + (8*x^7 + 7*x^6*y + 21*x^5*y^2 + 35*x^4*y^3 + 35*x^3*y^4 + 21*x^2*y^5 + 7*x*y^6 + 8*y^7)/7 + (1*x^8 + 8*x^7*y + 28*x^6*y^2 + 56*x^5*y^3 + 70*x^4*y^4 + 56*x^3*y^5 + 28*x^2*y^6 + 8*x*y^7 + 1*y^8)/8 + ...
begins
n=0: [0, 1, 1, 4, 1, 6, 4, 8, 1, 13, 6, ..., A000593(k), ...];
n=1: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...];
n=2: [1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...];
n=3: [4, 4, 10, 26, 35, 56, 93, 120, 165, 232, ...];
n=4: [1, 5, 15, 35, 70, 126, 210, 330, 495, 715, ...];
n=5: [6, 6, 21, 56, 126, 262, 462, 792, 1287, 2002, ...];
n=6: [4, 7, 28, 93, 210, 462, 942, 1716, 3003, 5035, ...];
n=7: [8, 8, 36, 120, 330, 792, 1716, 3446, 6435, 11440, ...];
n=8: [1, 9, 45, 165, 495, 1287, 3003, 6435, 12870, 24310, ...];
n=9: [13, 10, 55, 232, 715, 2002, 5035, 11440, 24310, 48698, ...];
n=10: [6, 11, 66, 286, 1001, 3018, 8008, 19448, 43758, 92378, ...]; ...
in which the diagonal of coefficients of x^n*y^n/(2*n) equals
[0, 2, 6, 26, 70, 262, 942, 3446, 12870, 48698, ..., 2*a(n), ...],
which is twice this sequence.
The related infinite product may be written as the following series expansion
Product_{n>=1} 1/(1 - x^(2*n-1) - y^(2*n-1)) = 1/( (1 - x - y) * (1 - x^3 - y^3) * (1 - x^5 - y^5) * (1 - x^7 - y^7) * (1 - x^9 - y^9) * (1 - x^11 - y^11) * ...) = 1 + (1*x + 1*y) + (1*x^2 + 2*x*y + 1*y^2) + (2*x^3 + 3*x^2*y + 3*x*y^2 + 2*y^3) + (2*x^4 + 5*x^3*y + 6*x^2*y^2 + 5*x*y^3 + 2*y^4) + (3*x^5 + 7*x^4*y + 11*x^3*y^2 + 11*x^2*y^3 + 7*x*y^4 + 3*y^5) + (4*x^6 + 10*x^5*y + 18*x^4*y^2 + 24*x^3*y^3 + 18*x^2*y^4 + 10*x*y^5 + 4*y^6) + (5*x^7 + 14*x^6*y + 28*x^5*y^2 + 42*x^4*y^3 + 42*x^3*y^4 + 28*x^2*y^5 + 14*x*y^6 + 5*y^7) + (6*x^8 + 19*x^7*y + 42*x^6*y^2 + 71*x^5*y^3 + 84*x^4*y^4 + 71*x^3*y^5 + 42*x^2*y^6 + 19*x*y^7 + 6*y^8) + ...
		

Crossrefs

Programs

  • PARI
    N=35;
    {L = sum(n=1, N+1, -log(1 - x^(2*n-1) - y^(2*n-1) +x*O(x^N) +y*O(y^N)) ); }
    {a(n) = polcoeff( n*polcoeff( L, n, x), n, y)}
    for(n=1, N, print1( a(n), ", ") )

Formula

a(n) ~ 2^(2*n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Jun 18 2019