cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322188 G.f.: exp( Sum_{n>=1} A322187(n)*x^n/n ), where A322187(n) is the coefficient of x^n*y^n/n in log( Product_{n>=1} 1/(1 - x^(2*n-1) - y^(2*n-1)) ).

Original entry on oeis.org

1, 1, 2, 6, 15, 45, 140, 448, 1483, 5027, 17311, 60469, 213678, 762284, 2741864, 9932346, 36202666, 132677658, 488605698, 1807176452, 6710206574, 25003642942, 93468147306, 350425771854, 1317330452697, 4964398631867, 18751217069083, 70975750129731, 269180061675328, 1022750160098864, 3892577330120307, 14838784128136803, 56651259287153670, 216586672901518164, 829142137823283601, 3178107527615273349
Offset: 0

Views

Author

Paul D. Hanna, Dec 07 2018

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 15*x^4 + 45*x^5 + 140*x^6 + 448*x^7 + 1483*x^8 + 5027*x^9 + 17311*x^10 + 60469*x^11 + 213678*x^12 + ...
such that
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 35*x^4/4 + 131*x^5/5 + 471*x^6/6 + 1723*x^7/7 + 6435*x^8/8 + 24349*x^9/9 + 92393*x^10/10 + 352727*x^11/11 + 1352183*x^12/12 + ... + A322187(n)*x^n/n + ...
RELATED SERIES.
A(x)^2 = 1 + 2*x + 5*x^2 + 16*x^3 + 46*x^4 + 144*x^5 + 466*x^6 + 1536*x^7 + 5187*x^8 + 17842*x^9 + 62209*x^10 + 219504*x^11 + 782272*x^12 + ...
		

Crossrefs

Programs

  • PARI
    N=35;
    {L = sum(n=1, N+1, -log(1 - x^(2*n-1) - y^(2*n-1) +x*O(x^N) +y*O(y^N)) ); }
    {A322187(n) = polcoeff( n*polcoeff( L, n, x), n, y)}
    {a(n) = polcoeff( exp( sum(m=1, n, A322187(m)*x^m/m ) +x*O(x^n) ), n) }
    for(n=0, N, print1( a(n), ", ") )

Formula

a(n) ~ c * 4^n / n^(3/2), where c = 0.57389010009720382786456367148681469430628117317... - Vaclav Kotesovec, Jun 18 2019