cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322193 E.g.f.: C(x,y) = cosh(x)*cosh(y) / (1 - sinh(x)*sinh(y)), where C(x,y) = Sum_{n>=0} Sum_{k=0..2*n} T(n,k) * x^(2*n-k)*y^k/((2*n-k)!*k!), as a triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 5, 4, 1, 1, 16, 41, 52, 41, 16, 1, 1, 64, 365, 784, 977, 784, 365, 64, 1, 1, 256, 3281, 12352, 23801, 29056, 23801, 12352, 3281, 256, 1, 1, 1024, 29525, 196864, 589217, 1049344, 1257125, 1049344, 589217, 196864, 29525, 1024, 1, 1, 4096, 265721, 3146752, 14677961, 37789696, 63318641, 74628352, 63318641, 37789696, 14677961, 3146752, 265721, 4096, 1, 1, 16384, 2391485, 50335744, 366476657, 1360482304, 3140590685, 5010663424, 5823720257, 5010663424, 3140590685, 1360482304, 366476657, 50335744, 2391485, 16384, 1
Offset: 0

Views

Author

Paul D. Hanna, Dec 20 2018

Keywords

Comments

See A322621 for another description of the e.g.f. of this sequence.

Examples

			E.g.f.: C(x,y) = 1 + (1*x^2/2! + 1*x*y + 1*y^2/2!) + (1*x^4/4! + 4*x^3*y/3! + 5*x^2*y^2/(2!*2!) + 4*x*y^3/3! + 1*y^4/4!) + (1*x^6/6! + 16*x^5*y/5! + 41*x^4*y^2/(4!*2!) + 52*x^3*y^3/(3!*3!) + 41*x^2*y^4/(2!*4!) + 16*x*y^5/5! + 1*y^6/6!) + (1*x^8/8! + 64*x^7*y/7! + 365*x^6*y^2/(6!*2!) + 784*x^5*y^3/(5!*3!) + 977*x^4*y^4/(4!*4!) + 784*x^3*y^5/(3!*5!) + 365*x^2*y^6/(2!*6!) + 64*x*y^7/7! + 1*y^8/8!) + ...
where C(x,y) = cosh(x)*cosh(y) / (1 - sinh(x)*sinh(y)).
This irregular triangle of coefficients of x^(2*n-k)*y^k/((2*n-k)!*k!) in C(x,y) begins
1;
1, 1, 1;
1, 4, 5, 4, 1;
1, 16, 41, 52, 41, 16, 1;
1, 64, 365, 784, 977, 784, 365, 64, 1;
1, 256, 3281, 12352, 23801, 29056, 23801, 12352, 3281, 256, 1;
1, 1024, 29525, 196864, 589217, 1049344, 1257125, 1049344, 589217, 196864, 29525, 1024, 1;
1, 4096, 265721, 3146752, 14677961, 37789696, 63318641, 74628352, 63318641; 37789696, 14677961, 3146752, 265721, 4096, 1; ...
RELATED SERIES.
The series S(x,y), such that C(x,y)^2 - S(x,y)^2 = 1, begins
S(x,y) = (1*x + 1*y) + (1*x^3/3! + 2*x^2*y/2! + 2*x*y^2/2! + 1*y^3/3!) + (1*x^5/5! + 8*x^4*y/4! + 14*x^3*y^2/(3!*2!) + 14*x^2*y^3/(2!*3!) + 8*x*y^4/4! + 1*y^5/5!) + (1*x^7/7! + 32*x^6*y/6! + 122*x^5*y^2/(5!*2!) + 200*x^4*y^3/(4!*3!) + 200*x^3*y^4/(3!*4!) + 122*x^2*y^5/(2!*5!) + 32*x*y^6/6! + 1*y^7/7!) + ...
The e.g.f. may be written with coefficients of x^(2*n-k)*y^k/(2*n)!, as follows:
C(x,y) = 1 + (1*x^2 + 2*x*y + 1*y^2)/2! + (1*x^4 + 16*x^3*y + 30*x^2*y^2 + 16*x*y^3 + 1*y^4)/4! + (1*x^6 + 96*x^5*y + 615*x^4*y^2 + 1040*x^3*y^3 + 615*x^2*y^4 + 96*x*y^5 + 1*y^6)/6! + (1*x^8 + 512*x^7*y + 10220*x^6*y^2 + 43904*x^5*y^3 + 68390*x^4*y^4 + 43904*x^3*y^5 + 10220*x^2*y^6 + 512*x*y^7 + 1*y^8)/8! + ...
these coefficients are described by triangle A322621.
		

Crossrefs

Cf. A322190 (C + S), A322194 (S), A322195 (main diagonal).

Programs

  • Mathematica
    T[n_, k_] := (2n-k)! k! SeriesCoefficient[Cosh[x] Cosh[y]/(1-Sinh[x] Sinh[y]), {x, 0, 2n-k}, {y, 0, k}];
    Table[T[n, k], {n, 0, 8}, {k, 0, 2n}] // Flatten (* Jean-François Alcover, Dec 29 2018 *)
  • PARI
    {T(n, k) = my(X=x+x*O(x^(2*n-k)), Y=y+y*O(y^k));
    C = cosh(X)*cosh(Y)/(1 - sinh(X)*sinh(Y));
    (2*n-k)!*k!*polcoeff(polcoeff(C, 2*n-k, x), k, y)}
    /* Print as a triangle */
    for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))

Formula

E.g.f.: C(x,y) and related series S(x,y) satisfy the following identities.
(1) C(x,y)^2 - S(x,y)^2 = 1.
(2a) C(x,y) = cosh(x) * cosh(y) / (1 - sinh(x)*sinh(y)).
(2b) S(x,y) = (sinh(x) + sinh(y)) / (1 - sinh(x)*sinh(y)).
(3a) cosh(x) = C(x,y) * cosh(y) / (1 + sinh(y)*S(x,y)).
(3b) sinh(x) = (S(x,y) - sinh(y)) / (1 + sinh(y)*S(x,y)).
(3c) cosh(y) = C(x,y) * cosh(x) / (1 + sinh(x)*S(x,y)).
(3d) sinh(y) = (S(x,y) - sinh(x)) / (1 + sinh(x)*S(x,y)).
(4a) exp(x) = (C(x,y)*cosh(y) + S(x,y) - sinh(y)) / (1 + sinh(y)*S(x,y)).
(4b) exp(y) = (C(x,y)*cosh(x) + S(x,y) - sinh(x)) / (1 + sinh(x)*S(x,y)).
(5a) exp(x) = (C(x,y) + S(x,y)*cosh(y)) * (cosh(y) - sinh(y)*C(x,y)) / (1 - sinh(y)^2*S(x,y)^2).
(5b) exp(y) = (C(x,y) + S(x,y)*cosh(x)) * (cosh(x) - sinh(x)*C(x,y)) / (1 - sinh(x)^2*S(x,y)^2).
(5c) C(x,y) + S(x,y) = (cosh(x) + sinh(x)*cosh(y)) * (cosh(y) + sinh(y)*cosh(x)) / (1 - sinh(x)^2*sinh(y)^2).
(6a) exp(x) = (C(x,y) + S(x,y)*cosh(y)) / (cosh(y) + sinh(y)*C(x,y)).
(6b) exp(y) = (C(x,y) + S(x,y)*cosh(x)) / (cosh(x) + sinh(x)*C(x,y)).
(6c) C(x,y) + S(x,y) = (cosh(x) + sinh(x)*cosh(y)) / (cosh(y) - sinh(y)*cosh(x)).
(6d) C(x,y) + S(x,y) = (cosh(y) + sinh(y)*cosh(x)) / (cosh(x) - sinh(x)*cosh(y)).
SPECIAL ARGUMENTS.
C(x, y=0) = cosh(x).
C(x, y=x) = cosh(x)^2 / (1 - sinh(x)^2).
C(x, y=-x) = 1.