1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 4, 5, 4, 1, 1, 8, 14, 14, 8, 1, 1, 16, 41, 52, 41, 16, 1, 1, 32, 122, 200, 200, 122, 32, 1, 1, 64, 365, 784, 977, 784, 365, 64, 1, 1, 128, 1094, 3104, 4808, 4808, 3104, 1094, 128, 1, 1, 256, 3281, 12352, 23801, 29056, 23801, 12352, 3281, 256, 1, 1, 512, 9842, 49280, 118280, 174752, 174752, 118280, 49280, 9842, 512, 1, 1, 1024, 29525, 196864, 589217, 1049344, 1257125, 1049344, 589217, 196864, 29525, 1024, 1, 1, 2048, 88574, 786944, 2939528, 6297728, 8948384, 8948384, 6297728, 2939528, 786944, 88574, 2048, 1
Offset: 0
E.g.f.: A(x,y) = 1 + (1*x + 1*y) + (1*x^2/2! + 1*x*y + 1*y^2/2!) + (1*x^3/3! + 2*x^2*y/2! + 2*x*y^2/2! + 1*y^3/3!) + (1*x^4/4! + 4*x^3*y/3! + 5*x^2*y^2/(2!*2!) + 4*x*y^3/3! + 1*y^4/4!) + (1*x^5/5! + 8*x^4*y/4! + 14*x^3*y^2/(3!*2!) + 14*x^2*y^3/(2!*3!) + 8*x*y^4/4! + 1*y^5/5!) + (1*x^6/6! + 16*x^5*y/5! + 41*x^4*y^2/(4!*2!) + 52*x^3*y^3/(3!*3!) + 41*x^2*y^4/(2!*4!) + 16*x*y^5/5! + 1*y^6/6!) + (1*x^7/7! + 32*x^6*y/6! + 122*x^5*y^2/(5!*2!) + 200*x^4*y^3/(4!*3!) + 200*x^3*y^4/(3!*4!) + 122*x^2*y^5/(2!*5!) + 32*x*y^6/6! + 1*y^7/7!) + (1*x^8/8! + 64*x^7*y/7! + 365*x^6*y^2/(6!*2!) + 784*x^5*y^3/(5!*3!) + 977*x^4*y^4/(4!*4!) + 784*x^3*y^5/(3!*5!) + 365*x^2*y^6/(2!*6!) + 64*x*y^7/7! + 1*y^8/8!) + ...
where A(x,y) = (cosh(x)*cosh(y) + sinh(x) + sinh(y)) / (1 - sinh(x)*sinh(y)).
This square table of coefficients of x^n*y^k/(n!*k!) in A(x,y) begins
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 1, 2, 4, 8, 16, 32, 64, 128, 256, ...;
1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, ...;
1, 4, 14, 52, 200, 784, 3104, 12352, 49280, 196864, ...;
1, 8, 41, 200, 977, 4808, 23801, 118280, 589217, 2939528, ...;
1, 16, 122, 784, 4808, 29056, 174752, 1049344, 6297728, 37789696, ...;
1, 32, 365, 3104, 23801, 174752, 1257125, 8948384, 63318641, 446442272, ...;
1, 64, 1094, 12352, 118280, 1049344, 8948384, 74628352, 614111360, 5010663424, ...;
1, 128, 3281, 49280, 589217, 6297728, 63318641, 614111360, 5823720257, 54420050048, ...; ...
This sequence may be written as a triangle, starting as
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 4, 5, 4, 1;
1, 8, 14, 14, 8, 1;
1, 16, 41, 52, 41, 16, 1;
1, 32, 122, 200, 200, 122, 32, 1;
1, 64, 365, 784, 977, 784, 365, 64, 1;
1, 128, 1094, 3104, 4808, 4808, 3104, 1094, 128, 1;
1, 256, 3281, 12352, 23801, 29056, 23801, 12352, 3281, 256, 1;
1, 512, 9842, 49280, 118280, 174752, 174752, 118280, 49280, 9842, 512, 1; ...
RELATED SERIES.
The series expansions for C(x,y) and S(x,y) are given by
C(x,y) = 1 + (1*x^2/2! + 1*x*y + 1*y^2/2!) + (1*x^4/4! + 4*x^3*y/3! + 5*x^2*y^2/(2!*2!) + 4*x*y^3/3! + 1*y^4/4!) + (1*x^6/6! + 16*x^5*y/5! + 41*x^4*y^2/(4!*2!) + 52*x^3*y^3/(3!*3!) + 41*x^2*y^4/(2!*4!) + 16*x*y^5/5! + 1*y^6/6!) + (1*x^8/8! + 64*x^7*y/7! + 365*x^6*y^2/(6!*2!) + 784*x^5*y^3/(5!*3!) + 977*x^4*y^4/(4!*4!) + 784*x^3*y^5/(3!*5!) + 365*x^2*y^6/(2!*6!) + 64*x*y^7/7! + 1*y^8/8!) + ...
S(x,y) = (1*x + 1*y) + (1*x^3/3! + 2*x^2*y/2! + 2*x*y^2/2! + 1*y^3/3!) + (1*x^5/5! + 8*x^4*y/4! + 14*x^3*y^2/(3!*2!) + 14*x^2*y^3/(2!*3!) + 8*x*y^4/4! + 1*y^5/5!) + (1*x^7/7! + 32*x^6*y/6! + 122*x^5*y^2/(5!*2!) + 200*x^4*y^3/(4!*3!) + 200*x^3*y^4/(3!*4!) + 122*x^2*y^5/(2!*5!) + 32*x*y^6/6! + 1*y^7/7!) + ...
where A(x,y) = C(x,y) + S(x,y) such that C(x,y)^2 - S(x,y)^2 = 1.
The e.g.f. may be written with coefficients of x^n*y^k/(n+k)!, as follows:
A(x,y) = 1 + (1*x + 1*y) + (1*x^2 + 2*x*y + 1*y^2)/2! + (1*x^3 + 6*x^2*y + 6*x*y^2 + 1*y^3)/3! + (1*x^4 + 16*x^3*y + 30*x^2*y^2 + 16*x*y^3 + 1*y^4)/4! + (1*x^5 + 40*x^4*y + 140*x^3*y^2 + 140*x^2*y^3 + 40*x*y^4 + 1*y^5)/5! + (1*x^6 + 96*x^5*y + 615*x^4*y^2 + 1040*x^3*y^3 + 615*x^2*y^4 + 96*x*y^5 + 1*y^6)/6! + (1*x^7 + 224*x^6*y + 2562*x^5*y^2 + 7000*x^4*y^3 + 7000*x^3*y^4 + 2562*x^2*y^5 + 224*x*y^6 + 1*y^7)/7! + (1*x^8 + 512*x^7*y + 10220*x^6*y^2 + 43904*x^5*y^3 + 68390*x^4*y^4 + 43904*x^3*y^5 + 10220*x^2*y^6 + 512*x*y^7 + 1*y^8)/8! + ...
these coefficients are described by table A322620.
Comments