A322201 Main diagonal of square table A322200.
0, 2, 10, 26, 90, 262, 994, 3446, 13050, 48698, 185310, 705454, 2706354, 10400626, 40123534, 155118406, 601106490, 2333606254, 9075235522, 35345263838, 137846899790, 538257884918, 2104100374694, 8233430727646, 32247609134418, 126410606439062, 495918553749434, 1946939425794206, 7648690681007998, 30067266499541098, 118264581875657214, 465428353255261150
Offset: 0
Keywords
Examples
L.g.f.: L(x) = 2*x + 10*x^2/2 + 26*x^3/3 + 90*x^4/4 + 262*x^5/5 + 994*x^6/6 + 3446*x^7/7 + 13050*x^8/8 + 48698*x^9/9 + 185310*x^10/10 + 705454*x^11/11 + 2706354*x^12/12 + ... such that exp( L(x) ) = 1 + 2*x + 7*x^2 + 20*x^3 + 63*x^4 + 190*x^5 + 613*x^6 + 1976*x^7 + 6604*x^8 + 22368*x^9 + 77270*x^10 + 270208*x^11 + 956780*x^12 + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..400
Programs
-
PARI
{L = sum(n=1,61, -log(1 - (x^n + y^n) +O(x^61) +O(y^61)) );} {a(n) = polcoeff( 2*n*polcoeff( L,n,x),n,y)} for(n=0,35, print1( a(n),", ") )
Formula
a(n) = coefficient of x^n*y^n/(2*n) in Sum_{n>=1} -log(1 - (x^n + y^n)) for n>=0.
a(n) ~ 4^n / sqrt(Pi*n). - Vaclav Kotesovec, Jun 18 2019