cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322203 a(n) = coefficient of x^n*y^n/n in Sum_{n>=1} -log(1 - (x^n + y^n)), for n >= 1.

Original entry on oeis.org

1, 5, 13, 45, 131, 497, 1723, 6525, 24349, 92655, 352727, 1353177, 5200313, 20061767, 77559203, 300553245, 1166803127, 4537617761, 17672631919, 68923449895, 269128942459, 1052050187347, 4116715363823, 16123804567209, 63205303219531, 247959276874717, 973469712897103, 3824345340503999, 15033633249770549, 59132290937828607, 232714176627630575, 916312071072401757
Offset: 1

Views

Author

Paul D. Hanna, Nov 30 2018

Keywords

Examples

			G.f.: L(x) = x + 5*x^2/2 + 13*x^3/3 + 45*x^4/4 + 131*x^5/5 + 497*x^6/6 + 1723*x^7/7 + 6525*x^8/8 + 24349*x^9/9 + 92655*x^10/10 + 352727*x^11/11 + 1353177*x^12/12 + ...
such that
exp( L(x) ) = 1 + x + 3*x^2 + 7*x^3 + 20*x^4 + 54*x^5 + 168*x^6 + 518*x^7 + 1702*x^8 + 5672*x^9 + 19413*x^10 + 67329*x^11 + ... + A322204(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {L = sum(n=1,61, -log(1 - (x^n + y^n) +O(x^61) +O(y^61)) );}
    {a(n) = polcoeff( n*polcoeff( L,n,x),n,y)}
    for(n=1,35, print1( a(n),", ") )

Formula

a(n) = A322200(n,n)/2 for n >= 1.
a(n) ~ 2^(2*n-1) / sqrt(Pi*n). - Vaclav Kotesovec, Jun 18 2019