cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322218 E.g.f.: C(x,q) = 1 + Integral S(x,q) * C(q*x,q) dx, such that C(x,q)^2 - S(x,q)^2 = 1, where C(x,q) = Sum_{n>=0} sum_{k=0..n*(n-1)/2} T(n,k)*x^n*y^k/n!, as an irregular triangle of coefficients T(n,k) read by rows.

Original entry on oeis.org

1, 1, 1, 4, 1, 20, 16, 24, 1, 56, 336, 288, 384, 128, 192, 1, 120, 2352, 6448, 12736, 5888, 10176, 5760, 3840, 1280, 1920, 1, 220, 10032, 93280, 214016, 472704, 385472, 431616, 294912, 341504, 141056, 164352, 69120, 46080, 15360, 23040, 1, 364, 32032, 740168, 4072640, 11702912, 18676672, 30112640, 23848704, 27599616, 17884032, 20958208, 13595136, 11074560, 5992448, 5945856, 2673664, 2300928, 967680, 645120, 215040, 322560, 1, 560, 84448, 3952832, 53301248, 230161152, 738249344, 1166436352, 1970874368, 2196244480, 2459786240, 1804101632, 2061498368, 1537437696, 1437724672, 989968384, 921092096, 487923712, 499621888, 282034176, 211599360, 117383168, 108036096, 42778624, 36814848, 15482880, 10321920, 3440640, 5160960
Offset: 0

Views

Author

Paul D. Hanna, Dec 16 2018

Keywords

Comments

Compare to Jacobi's elliptic function cn(x,k) = 1 - Integral sn(x,k)*dn(x,k) dx such that cn(x,k)^2 + sn(x,k)^2 = 1 and dn(x,k)^2 + k^2*sn(x,k)^2 = 1.
Right border equals A002866.
Row sums equal the secant numbers (A000364).
Last n terms in row n of this triangle and of triangle A322219 are equal for n>0.

Examples

			E.g.f. C(x,q) = Sum_{n>=0} sum_{k=0..n*(n-1)/2} T(n,k) * x^(2*n)*q^(2*k)/(2*n)! starts
C(x,q) = 1 + x^2/2! + (4*q^2 + 1)*x^4/4! + (24*q^6 + 16*q^4 + 20*q^2 + 1)*x^6/6! + (192*q^12 + 128*q^10 + 384*q^8 + 288*q^6 + 336*q^4 + 56*q^2 + 1)*x^8/8! + (1920*q^20 + 1280*q^18 + 3840*q^16 + 5760*q^14 + 10176*q^12 + 5888*q^10 + 12736*q^8 + 6448*q^6 + 2352*q^4 + 120*q^2 + 1)*x^10/10! + (23040*q^30 + 15360*q^28 + 46080*q^26 + 69120*q^24 + 164352*q^22 + 141056*q^20 + 341504*q^18 + 294912*q^16 + 431616*q^14 + 385472*q^12 + 472704*q^10 + 214016*q^8 + 93280*q^6 + 10032*q^4 + 220*q^2 + 1)*x^12/12! + ...
such that C(x,q) = cosh( Integral C(q*x,q) dx ).
This irregular triangle of coefficients T(n,k) of x^(2*n)*q^(2*k)/(2*n)! in C(x,q) begins:
1;
1;
1, 4;
1, 20, 16, 24;
1, 56, 336, 288, 384, 128, 192;
1, 120, 2352, 6448, 12736, 5888, 10176, 5760, 3840, 1280, 1920;
1, 220, 10032, 93280, 214016, 472704, 385472, 431616, 294912, 341504, 141056, 164352, 69120, 46080, 15360, 23040;
1, 364, 32032, 740168, 4072640, 11702912, 18676672, 30112640, 23848704, 27599616, 17884032, 20958208, 13595136, 11074560, 5992448, 5945856, 2673664, 2300928, 967680, 645120, 215040, 322560;
1, 560, 84448, 3952832, 53301248, 230161152, 738249344, 1166436352, 1970874368, 2196244480, 2459786240, 1804101632, 2061498368, 1537437696, 1437724672, 989968384, 921092096, 487923712, 499621888, 282034176, 211599360, 117383168, 108036096, 42778624, 36814848, 15482880, 10321920, 3440640, 5160960; ...
RELATED SERIES.
S(x,q) = x + (q^2 + 1)*x^3/3! + (4*q^6 + q^4 + 10*q^2 + 1)*x^5/5! + (24*q^12 + 16*q^10 + 20*q^8 + 85*q^6 + 91*q^4 + 35*q^2 + 1)*x^7/7! + (192*q^20 + 128*q^18 + 384*q^16 + 288*q^14 + 1200*q^12 + 632*q^10 + 2737*q^8 + 1324*q^6 + 966*q^4 + 84*q^2 + 1)*x^9/9! + (1920*q^30 + 1280*q^28 + 3840*q^26 + 5760*q^24 + 10176*q^22 + 16448*q^20 + 19776*q^18 + 27568*q^16 + 49872*q^14 + 69816*q^12 + 64329*q^10 + 50941*q^8 + 26818*q^6 + 5082*q^4 + 165*q^2 + 1)*x^11/11! +  ...
where C(x,q)^2 - S(x,q)^2 = 1.
		

Crossrefs

Cf. A322219 (S(x,q)), A000364 (row sums), A193544.

Programs

  • Mathematica
    rows = 8; m = 2 rows; s[x_, ] = x; c[, ] = 1; Do[s[x, q_] = Integrate[c[x, q] c[q x, q] + O[x]^m // Normal, x]; c[x_, q_] = 1 + Integrate[s[x, q] c[q x, q] + O[x]^m // Normal, x], {m}];
    CoefficientList[#, q^2]& /@ (CoefficientList[c[x, q], x] Range[0, m]!) // DeleteCases[#, {}]& // Flatten (* Jean-François Alcover, Dec 17 2018 *)
  • PARI
    {T(n,k) = my(S=x,C=1); for(i=1,2*n,
    S = intformal(C*subst(C,x,q*x) +O(x^(2*n+1)));
    C = 1 + intformal(S*subst(C,x,q*x)));
    (2*n)!*polcoeff( polcoeff(C,2*n,x),2*k,q)}
    for(n=0,10, for(k=0,n*(n-1)/2, print1( T(n,k),", "));print(""))

Formula

E.g.f. C(x,q) and related series S(x,q) satisfy:
(1) C(x,q)^2 - S(x,q)^2 = 1.
(2) C(x,q) = 1 + Integral S(x,q) * C(q*x,q) dx.
(3) S(x,q) = Integral C(x,q) * C(q*x,q) dx.
(4a) C(x,q) + S(x,q) = exp( Integral C(q*x,q) dx ).
(4b) C(x,q) = cosh( Integral C(q*x,q) dx ).
(4c) S(x,q) = sinh( Integral C(q*x,q) dx ).
(5) C(q*x,q) = 1 + q * Integral S(q*x,q) * C(q^2*x,q) dx.
(6) S(q*x,q) = q * Integral C(q*x,q) * C(q^2*x,q) dx.
(7a) C(q*x,q) + S(q*x,q) = exp( q * Integral C(q^2*x,q) dx ).
(7b) C(q*x,q) = cosh( q * Integral C(q^2*x,q) dx ).
(7c) S(q*x,q) = sinh( q * Integral C(q^2*x,q) dx ).
PARTICULAR ARGUMENTS.
C(x,q=0) = cosh(x).
C(x,q=1) = 1/cos(x).
C(x,q=i) = cl(i*x), where cl(x) is the cosine lemniscate function (A159600).
FORMULAS FOR TERMS.
T(n, n*(n-1)/2) = 2^(n-1)*n! for n >= 1.
T(n, n*(n-1)/2 - k) = A322219(n, n*(n+1)/2 - k) for k = 0..n-1, n > 0.
Sum_{k=0..n*(n-1)/2} T(n,k) = A000364(n) for n >= 0.
Sum_{k=0..n*(n-1)/2} T(n,k)*(-1)^k = A193544(2*n+1) for n >= 0.