cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322235 Triangle, read by rows, each row n being defined by g.f. Product_{k=1..n} (k + x + k*x^2), for n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 3, 2, 6, 11, 24, 23, 24, 11, 6, 24, 50, 131, 160, 215, 160, 131, 50, 24, 120, 274, 825, 1181, 1890, 1815, 1890, 1181, 825, 274, 120, 720, 1764, 5944, 9555, 17471, 19866, 24495, 19866, 17471, 9555, 5944, 1764, 720, 5040, 13068, 48412, 85177, 173460, 223418, 313628, 302619, 313628, 223418, 173460, 85177, 48412, 13068, 5040, 40320, 109584, 440684, 834372, 1860153, 2642220, 4120122, 4521924, 5320667, 4521924, 4120122, 2642220, 1860153, 834372, 440684, 109584, 40320, 362880, 1026576, 4438620, 8936288, 21541905, 33149481, 56464695, 68597418, 89489025, 86715299, 89489025, 68597418, 56464695, 33149481, 21541905, 8936288, 4438620, 1026576, 362880
Offset: 0

Views

Author

Paul D. Hanna, Dec 15 2018

Keywords

Examples

			This irregular triangle formed from coefficients of x^k in Product_{m=1..n} (m + x + m*x^2), for n >= 0, k = 0..2*n, begins
1;
1, 1, 1;
2, 3, 5, 3, 2;
6, 11, 24, 23, 24, 11, 6;
24, 50, 131, 160, 215, 160, 131, 50, 24;
120, 274, 825, 1181, 1890, 1815, 1890, 1181, 825, 274, 120;
720, 1764, 5944, 9555, 17471, 19866, 24495, 19866, 17471, 9555, 5944, 1764, 720;
5040, 13068, 48412, 85177, 173460, 223418, 313628, 302619, 313628, 223418, 173460, 85177, 48412, 13068, 5040;
40320, 109584, 440684, 834372, 1860153, 2642220, 4120122, 4521924, 5320667, 4521924, 4120122, 2642220, 1860153, 834372, 440684, 109584, 40320; ...
in which the central terms equal A322238.
RELATED SEQUENCES.
Note that the terms in the secondary diagonal A322237 in the above triangle
[1, 3, 24, 160, 1890, 19866, 313628, 4521924, 89489025, 1642616195, ...]
may be divided by triangular numbers to obtain A322236:
[1, 1, 4, 16, 126, 946, 11201, 125609, 1988645, 29865749, 592326527, ...].
		

Crossrefs

Cf. A322225 (variant), A322891 (variant).

Programs

  • Mathematica
    row[n_] := CoefficientList[Product[k+x+k*x^2, {k, 1, n}] + O[x]^(2n+1), x];
    Table[row[n], {n, 0, 9}] // Flatten (* Jean-François Alcover, Dec 26 2018 *)
  • PARI
    {T(n, k) = polcoeff( prod(m=1, n, m + x + m*x^2) +x*O(x^k), k)}
    /* Print the irregular triangle */
    for(n=0, 10, for(k=0, 2*n, print1( T(n, k), ", ")); print(""))

Formula

Row sums equal (2*n+1)!/(n!*2^n), the odd double factorials.
Left and right borders equal n!.