A322258 Decimal expansion of exp(-phi/sqrt(5)), where phi is the golden ratio.
4, 8, 4, 9, 9, 9, 8, 0, 1, 2, 9, 2, 9, 5, 8, 0, 2, 5, 2, 3, 1, 7, 5, 1, 3, 2, 2, 3, 0, 0, 9, 5, 2, 4, 8, 3, 4, 8, 0, 6, 5, 9, 9, 6, 5, 6, 4, 1, 5, 5, 9, 5, 7, 1, 2, 5, 2, 7, 1, 8, 0, 2, 9, 1, 0, 2, 9, 1, 9, 2, 1, 2, 8, 4, 6, 5, 8, 8, 5, 6, 9, 3, 5, 0, 1, 5, 0
Offset: 0
Examples
0.48499980129295802523175132230095248348065996564155...
References
- J. Sandor and B. Crstici, Handbook of Number Theory II, Springer, 2004, pp. 54-55, p. 182.
Links
- Don Redmond, Infinite products and Fibonacci numbers, Fib. Quart., Vol. 32, No. 3 (1994), pp. 234-239.
- Index entries for transcendental numbers
Programs
-
Mathematica
RealDigits[Exp[-GoldenRatio/Sqrt[5]], 10, 120][[1]]
-
PARI
exp(-(1+1/sqrt(5))/2) \\ Charles R Greathouse IV, Nov 21 2024
Formula
Equals Product_{k>=1} (L(k)/(sqrt(5)*F(k)))^(phi(k)/k), where L(k) and F(k) are the Lucas and Fibonacci numbers, and phi(k) is the Euler totient function.
Equals exp(-A242671).