cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322263 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = numerator of Sum_{d|n} 1/d^k.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 9, 10, 7, 2, 1, 17, 28, 21, 6, 4, 1, 33, 82, 73, 26, 2, 2, 1, 65, 244, 273, 126, 25, 8, 4, 1, 129, 730, 1057, 626, 7, 50, 15, 3, 1, 257, 2188, 4161, 3126, 697, 344, 85, 13, 4, 1, 513, 6562, 16513, 15626, 671, 2402, 585, 91, 9, 2, 1, 1025, 19684, 65793, 78126, 23725, 16808, 4369, 757, 13, 12, 6
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			Square array begins:
  1,    1,      1,        1,        1,          1,  ...
  2,  3/2,    5/4,      9/8,    17/16,      33/32,  ...
  2,  4/3,   10/9,    28/27,    82/81,    244/243,  ...
  3,  7/4,  21/16,    73/64,  273/256,  1057/1024,  ...
  2,  6/5,  26/25,  126/125,  626/625,  3126/3125,  ...
  4,    2,  25/18,      7/6,  697/648,    671/648,  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, Numerator[DivisorSigma[-k, n]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, Numerator[DivisorSigma[k, n]/n^k]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten
    Table[Function[k, Numerator[SeriesCoefficient[Sum[x^j/(j^k (1 - x^j)), {j, 1, n}], {x, 0, n}]]][i - n], {i, 0, 12}, {n, 1, i}] // Flatten

Formula

G.f. of column k: Sum_{j>=1} x^j/(j^k*(1 - x^j)) (for rationals Sum_{d|n} 1/d^k).
Dirichlet g.f. of column k: zeta(s)*zeta(s+k) (for rationals Sum_{d|n} 1/d^k).
A(n,k) = numerator of sigma_k(n)/n^k.