cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322266 Square array A(n,k), n >= 1, k >= 0, read by antidiagonals: A(n,k) = denominator of Sum_{j=1..n} 1/j^k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 6, 1, 1, 8, 36, 12, 1, 1, 16, 216, 144, 60, 1, 1, 32, 1296, 1728, 3600, 20, 1, 1, 64, 7776, 20736, 216000, 3600, 140, 1, 1, 128, 46656, 248832, 12960000, 24000, 176400, 280, 1, 1, 256, 279936, 2985984, 777600000, 12960000, 8232000, 705600, 2520, 1
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			Square array begins:
  1,       1,          1,              1,                  1,  ...
  2,     3/2,        5/4,            9/8,              17/16,  ...
  3,    11/6,      49/36,        251/216,          1393/1296,  ...
  4,   25/12,    205/144,      2035/1728,        22369/20736,  ...
  5,  137/60,  5269/3600,  256103/216000,  14001361/12960000,  ...
		

Crossrefs

Numerators are in A322265.

Programs

  • Mathematica
    Table[Function[k, Denominator[Sum[1/j^k, {j, 1, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
    Table[Function[k, Denominator[HarmonicNumber[n, k]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten
    Table[Function[k, Denominator[SeriesCoefficient[PolyLog[k, x]/(1 - x), {x, 0, n}]]][i - n], {i, 0, 10}, {n, 1, i}] // Flatten

Formula

G.f. of column k: PolyLog(k,x)/(1 - x), where PolyLog() is the polylogarithm function (for rationals Sum_{j=1..n} 1/j^k).