cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A296793 a(n) = n! * [x^n] exp(x)*(sec(x) + tan(x))^n.

Original entry on oeis.org

1, 2, 9, 67, 705, 9601, 160429, 3175579, 72638209, 1884974185, 54709142101, 1755923320559, 61748847320545, 2360991253910069, 97518218630249005, 4327060674324941491, 205272207854416078849, 10367500700785078039473, 555414837143457708584101, 31458118283019682610004279
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 20 2017

Keywords

Crossrefs

Main diagonal of A322268.

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[x] (Sec[x] + Tan[x])^n, {x, 0, n}], {n, 0, 19}]
  • PARI
    a(n) = Vec(serlaplace(exp(x)*(1/cos(x) + tan(x))^n))[n+1] \\ Iain Fox, Dec 20 2017

Formula

a(n) ~ c * d^n * n^n, where d = 1.12712316036287986633533456353714856005183790513784733... and c = 1.61865092826915643845148401952113086265743345... - Vaclav Kotesovec, Dec 21 2017

A322267 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. (sec(x) + tan(x))^k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 2, 0, 1, 4, 9, 10, 5, 0, 1, 5, 16, 30, 32, 16, 0, 1, 6, 25, 68, 117, 122, 61, 0, 1, 7, 36, 130, 320, 528, 544, 272, 0, 1, 8, 49, 222, 725, 1684, 2709, 2770, 1385, 0, 1, 9, 64, 350, 1440, 4400, 9856, 15600, 15872, 7936, 0, 1, 10, 81, 520, 2597, 9966, 29125, 63668, 99657, 101042, 50521, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 01 2018

Keywords

Examples

			E.g.f. of column k: A_k(x) = 1 + k*x/1! + k^2*x^2/2! + k*(k^2 + 1)*x^3/3! + k^2*(k^2 + 4)*x^4/4! + ...
Square array begins:
  1,   1,    1,    1,     1,     1,  ...
  0,   1,    2,    3,     4,     5,  ...
  0,   1,    4,    9,    16,    25,  ...
  0,   2,   10,   30,    68,   130,  ...
  0,   5,   32,  117,   320,   725,  ...
  0,  16,  122,  528,  1684,  4400,  ...
		

Crossrefs

Columns k=0..3 give A000007, A000111, A001250, A292758.
Main diagonal gives A298244.
Cf. A322268.

Programs

  • Mathematica
    Table[Function[k, n! SeriesCoefficient[(Sec[x] + Tan[x])^k, {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

E.g.f. of column k: (sec(x) + tan(x))^k.
Showing 1-2 of 2 results.