A322292 a(n) = Max_{c composite, c < n} (c + least prime factor of c).
6, 6, 8, 8, 10, 12, 12, 12, 14, 14, 16, 18, 18, 18, 20, 20, 22, 24, 24, 24, 26, 30, 30, 30, 30, 30, 32, 32, 34, 36, 36, 40, 40, 40, 40, 42, 42, 42, 44, 44, 46, 48, 48, 48, 50, 56, 56, 56, 56, 56, 56, 60, 60, 60, 60, 60, 62, 62, 64, 66, 66, 70, 70, 70, 70, 72, 72, 72
Offset: 5
Keywords
Examples
a(5) = 6 because the largest composite c < n = 5 is 4, which has the largest prime factor 2. Hence a(5) = 4 + 2 = 6. - _David A. Corneth_, Dec 03 2018
Links
- Robert Israel, Table of n, a(n) for n = 5..10000
- Paul Erdos, Some unconventional problems in number theory, Acta Mathematica Hungarica, 33(1):71-80, 1979. See p. 73.
Programs
-
Maple
N:= 100: # to get a(5)..a(N) V:= Vector(N): V[5]:= 6; for n from 6 to N do if isprime(n-1) then V[n]:= V[n-1] else V[n]:= max(V[n-1],n-1+min(numtheory:-factorset(n-1))) fi od: convert(V[5..N],list); # Robert Israel, Dec 03 2018
-
Mathematica
a[n_] := Module[{smax = 0}, Do[If[CompositeQ[m], smax = Max[smax, m + FactorInteger[m][[1, 1]]]], {m, 2, n-1}]; smax]; Array[a, 100, 5] (* Amiram Eldar, Dec 02 2018 *)
-
PARI
a(n) = {my(smax = 0); for(m=2, n-1, if (!isprime(m), smax = max(smax, m + factor(m)[1, 1]); )); smax; }
Comments