A322294 Number of permutations of [n] with exactly floor(n/2) rising or falling successions.
1, 1, 2, 4, 10, 48, 120, 888, 2198, 22120, 54304, 685368, 1674468, 25344480, 61736880, 1087931184, 2644978110, 53138966904, 129019925424, 2909014993080, 7056278570108, 176372774697856, 427516982398576, 11729862804913680, 28417031969575260, 848948339328178128
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..696
Programs
-
Maple
S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2] [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2) -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4))) end: a:= n-> coeff(S(n),t,floor(n/2)): seq(a(n), n=0..30);
-
Mathematica
s[n_] := s[n] = If[n < 4, {1, 1, 2*t, 4*t + 2*t^2}[[n + 1]], Expand[(n + 1 - t)*s[n - 1] - (1 - t)*(n - 2 + 3*t)*s[n - 2] - (1 - t)^2*(n - 5 + t)*s[n - 3] + (1 - t)^3*(n - 3)*s[n - 4]]]; t[n_, k_] := Ceiling[Coefficient[s[n], t, k]]; a[n_] := t[n, Floor[n/2]]; a /@ Range[0, 30] (* Jean-François Alcover, Sep 25 2019, after Alois P. Heinz *)
Formula
a(n) = A001100(n,floor(n/2)).