cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322294 Number of permutations of [n] with exactly floor(n/2) rising or falling successions.

Original entry on oeis.org

1, 1, 2, 4, 10, 48, 120, 888, 2198, 22120, 54304, 685368, 1674468, 25344480, 61736880, 1087931184, 2644978110, 53138966904, 129019925424, 2909014993080, 7056278570108, 176372774697856, 427516982398576, 11729862804913680, 28417031969575260, 848948339328178128
Offset: 0

Views

Author

Alois P. Heinz, Dec 02 2018

Keywords

Crossrefs

Bisections give A322295 (even part), A322295 (odd part).
Cf. A001100.

Programs

  • Maple
    S:= proc(n) option remember; `if`(n<4, [1, 1, 2*t, 4*t+2*t^2]
           [n+1], expand((n+1-t)*S(n-1) -(1-t)*(n-2+3*t)*S(n-2)
           -(1-t)^2*(n-5+t)*S(n-3) +(1-t)^3*(n-3)*S(n-4)))
        end:
    a:= n-> coeff(S(n),t,floor(n/2)):
    seq(a(n), n=0..30);
  • Mathematica
    s[n_] := s[n] = If[n < 4, {1, 1, 2*t, 4*t + 2*t^2}[[n + 1]], Expand[(n + 1 - t)*s[n - 1] - (1 - t)*(n - 2 + 3*t)*s[n - 2] - (1 - t)^2*(n - 5 + t)*s[n - 3] + (1 - t)^3*(n - 3)*s[n - 4]]];
    t[n_, k_] := Ceiling[Coefficient[s[n], t, k]];
    a[n_] := t[n, Floor[n/2]];
    a /@ Range[0, 30] (* Jean-François Alcover, Sep 25 2019, after Alois P. Heinz *)

Formula

a(n) = A001100(n,floor(n/2)).