cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A322588 Lexicographically earliest such sequence a that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = 0 for odd primes, and f(n) = A291750(n) for any other number.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 22, 23, 24, 23, 25, 3, 26, 27, 28, 3, 29, 3, 30, 31, 21, 3, 32, 33, 34, 21, 35, 3, 36, 21, 37, 38, 39, 3, 40, 3, 29, 41, 42, 43, 44, 3, 45, 29, 44, 3, 46, 3, 47, 48, 49, 29, 50, 3, 51, 52, 53, 3, 54, 55, 56, 57, 58, 3, 59, 60, 40, 61, 44, 57, 62, 3, 63, 64, 65, 3, 66, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2018

Keywords

Comments

For all i, j: a(i) = a(j) => A322318(i) = A322318(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    Aux322588(n) = if((n>2)&&isprime(n),0,(1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n)));
    v322588 = rgs_transform(vector(up_to, n, Aux322588(n)));
    A322588(n) = v322588[n];

A322320 a(n) = gcd(A003557(n), A173557(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, GCD[ Times@@ (First[#] ^(Last[#]-1)& /@  f), Times@@((#-1)& @@@ f)]]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A322320(n) = gcd(A173557(n), A003557(n));

Formula

a(n) = gcd(A003557(n), A173557(n)) = gcd(A322351(n), A322352(n)).
a(n) = A000010(n) / A322321(n).

A323163 Greatest common divisor of product (1+(p^e)) and product p^(e-1), where p ranges over prime factors of n, with e corresponding exponent; a(n) = gcd(A034448(n), A003557(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 3, 10, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 09 2019

Keywords

Crossrefs

Differs from A062760 for the first time at n=36, where a(36) = 2, while A062760(36) = 1.

Programs

  • PARI
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A323163(n) = gcd(A003557(n), A034448(n));

Formula

a(n) = gcd(A003557(n), A034448(n)).

A322319 a(n) = lcm(A003557(n), A048250(n)).

Original entry on oeis.org

1, 3, 4, 6, 6, 12, 8, 12, 12, 18, 12, 12, 14, 24, 24, 24, 18, 12, 20, 18, 32, 36, 24, 12, 30, 42, 36, 24, 30, 72, 32, 48, 48, 54, 48, 12, 38, 60, 56, 36, 42, 96, 44, 36, 24, 72, 48, 24, 56, 90, 72, 42, 54, 36, 72, 24, 80, 90, 60, 72, 62, 96, 96, 96, 84, 144, 68, 54, 96, 144, 72, 12, 74, 114, 120, 60, 96, 168, 80, 72
Offset: 1

Views

Author

Antti Karttunen, Dec 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, LCM[ Times@@ (First[#] ^(Last[#]-1)& /@  f), Times@@((#+1)& @@@ f)]]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; \\ From A003557
    A048250(n) = factorback(apply(p -> p+1, factor(n)[, 1]));
    A322319(n) = lcm(A048250(n), A003557(n));

Formula

a(n) = lcm(A003557(n), A048250(n)).
a(n) = A001615(n) / A322318(n).
Showing 1-4 of 4 results.