A322335 Number of 2-edge-connected integer partitions of n.
0, 0, 0, 1, 0, 3, 0, 4, 2, 7, 0, 13, 0, 15, 8, 21, 1, 37, 2, 45, 18, 58, 8, 95, 19, 109, 45, 150, 38, 232, 59, 268, 129, 357, 155, 523, 203, 633, 359, 852, 431, 1185, 609, 1464, 969
Offset: 1
Examples
The a(14) = 15 2-edge-connected integer partitions of 14: (7,7) (6,4,4) (4,4,4,2) (4,4,2,2,2) (4,2,2,2,2,2) (2,2,2,2,2,2,2) (8,6) (6,6,2) (6,4,2,2) (6,2,2,2,2) (10,4) (8,4,2) (8,2,2,2) (12,2) (10,2,2)
Links
- Wikipedia, k-edge-connected graph
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]]; Table[Length[Select[IntegerPartitions[n],twoedQ[primeMS/@#]&]],{n,30}]
Extensions
a(42)-a(45) from Jinyuan Wang, Jun 20 2020
Comments