cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322337 Number of strict 2-edge-connected integer partitions of n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 4, 3, 5, 0, 9, 0, 10, 5, 11, 1, 18, 3, 17, 8, 22, 3, 35, 5, 32, 17, 39, 16, 59, 14, 58, 33, 75, 28, 103, 35, 106, 71, 125, 63, 174, 81, 192, 127, 220, 130, 294, 170, 325, 237, 378, 257, 504
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is 2-edge-connected if the hypergraph of prime factorizations of its parts is connected and cannot be disconnected by removing any single part.

Examples

			The a(24) = 18 strict 2-edge-connected integer partitions of 24:
  (15,9)   (10,8,6)   (10,8,4,2)
  (16,8)   (12,8,4)   (12,6,4,2)
  (18,6)   (12,9,3)
  (20,4)   (14,6,4)
  (21,3)   (14,8,2)
  (22,2)   (15,6,3)
  (14,10)  (16,6,2)
           (18,4,2)
           (12,10,2)
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]];
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,twoedQ[primeMS/@#]]&]],{n,30}]