A322337 Number of strict 2-edge-connected integer partitions of n.
0, 0, 0, 0, 0, 1, 0, 1, 1, 2, 0, 4, 0, 4, 3, 5, 0, 9, 0, 10, 5, 11, 1, 18, 3, 17, 8, 22, 3, 35, 5, 32, 17, 39, 16, 59, 14, 58, 33, 75, 28, 103, 35, 106, 71, 125, 63, 174, 81, 192, 127, 220, 130, 294, 170, 325, 237, 378, 257, 504
Offset: 1
Keywords
Examples
The a(24) = 18 strict 2-edge-connected integer partitions of 24: (15,9) (10,8,6) (10,8,4,2) (16,8) (12,8,4) (12,6,4,2) (18,6) (12,9,3) (20,4) (14,6,4) (21,3) (14,8,2) (22,2) (15,6,3) (14,10) (16,6,2) (18,4,2) (12,10,2)
Links
- Wikipedia, k-edge-connected graph
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; twoedQ[sys_]:=And[Length[csm[sys]]==1,And@@Table[Length[csm[Delete[sys,i]]]==1,{i,Length[sys]}]]; Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,twoedQ[primeMS/@#]]&]],{n,30}]
Comments