cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323357 Number of binary self-dual codes of length 2n (up to permutation equivalence) that have a unique automorphism group size.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 7, 9, 16, 23, 42, 68, 94, 124, 159, 187, 212
Offset: 1

Views

Author

Nathan J. Russell, Jan 12 2019

Keywords

Comments

Two codes are said to be permutation equivalent if permuting the columns of one code results in the other code.
If permuting the columns of a code results in the same identical code the permutation is called an automorphism.
The automorphisms of a code form a group called the automorphism group.
Some codes have automorphism groups that contain the same number of elements. There are situations, both trivial and otherwise, that codes of different lengths can have the same size automorphism groups.
Some codes have automorphism group sizes that are unique to the code. This sequence only compares automorphism group sizes for codes with the same length.

Examples

			There are a(18) = 212 binary self-dual codes (up to permutation equivalence) of length 2*18 = 36 that have a unique automorphism group size.
		

Crossrefs

For self-dual codes see A028362, A003179, A106162, A028363, A106163, A269455, A120373; for automorphism groups see A322299, A322339.

A321945 Number of binary self-dual codes of length 2n having an automorphism group size that is a prime power.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 66, 738, 10760
Offset: 1

Views

Author

Nathan J. Russell, Dec 12 2018

Keywords

Comments

Codes are vector spaces with a metric defined on them. Specifically, the metric is the hamming distance between two vectors. Vectors of a code are called codewords.
A code is usually represented by a generating matrix. The row space of the generating matrix is the code itself.
Self-dual codes are codes such all codewords are pairwise orthogonal to each other.
Two codes are called permutation equivalent if one code can be obtained by permuting the coordinates (columns) of the other code.
The automorphism group of a code is the set of permutations of the coordinates (columns) that result in the same identical code.
There are codes with a trivial automorphism group of size 1. This sequence does not count those codes.

Examples

			There are a(17)=10760 binary self-dual codes of length 2*17=34 having an automorphism group size that is a prime power.
		

Crossrefs

A321946 Number of divisors for the automorphism group size having the largest number of divisors for a binary self-dual code of length 2n.

Original entry on oeis.org

2, 4, 10, 28, 36, 66, 144, 192, 340, 570, 1200, 1656, 3456, 5616, 9072, 10752, 22176
Offset: 1

Views

Author

Nathan J. Russell, Dec 12 2018

Keywords

Comments

A code is usually represented by a generating matrix. The row space of the generating matrix is the code itself.
Self-dual codes are codes such all codewords are pairwise orthogonal to each other.
Two codes are called permutation equivalent if one code can be obtained by permuting the coordinates (columns) of the other code.
The automorphism group of a code is the set of permutations of the coordinates (columns) that result in the same identical code.
The values in the sequence are not calculated lower bounds. For each n there exists a binary self-dual code of length 2n with an automorphism group of size a(n).
Binary self-dual codes have been classified (accounted for) up to a certain length. The classification process requires the automorphism group size be known for each code. There is a mass formula to calculate the number of distinct binary self-dual codes of a given length. Sequence A028362gives this count. The automorphism group size allows researchers to calculate the number of codes that are permutationally equivalent to a code. Each new binary self-dual code C of length m that is discovered will account for m!/aut(C) codes in the total number calculated by the mass formula. Aut(C) represents the automorphism size of the code C. Sequence A003179 gives number of binary self-dual codes up to permutation equivalence.
The values in the sequence are not calculated by a formula or algorithm. They are the result of calculating the number of divisors for every automorphism group of every binary self-dual code.
The number of divisors a(n) does count 1 and the number itself.
In general the automorphism group size with the largest number of divisors is not unique.
In general the automorphism group size with the largest number of divisors is not the largest group automorphism group size for a given binary self-dual code length.

Examples

			There is one binary self-dual code of length 2*14=28 having an automorphism group size of 1428329123020800.  This number has a(14) = 5616 divisors (including 1 and 1428329123020800).  The automorphism size of 1428329123020800 represents the automorphism size with the largest number of divisors for a binary self-dual code of length 2*14=28.
		

Crossrefs

Cf. Self-Dual Codes A028362, A003179, A106162, A028363, A106163, A269455, A120373.
Cf. Self-Dual Code Automorphism Groups A322299, A322339.

A323358 Number of distinct automorphism group sizes for binary self-dual codes of length 2n such that multiple same length binary self-dual codes with different weight distributions share the same automorphism group size.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 17, 55, 117, 226, 343, 535
Offset: 1

Views

Author

Nathan J. Russell, Jan 12 2019

Keywords

Comments

Two codes are said to be permutation equivalent if permuting the columns of one code results in the other code.
If permuting the columns of a code results in the same identical code the permutation is called an automorphism.
The automorphisms of a code form a group called the automorphism group.
Some codes have automorphism groups that contain the same number of elements. There are situations, both trivial and otherwise, that codes of different lengths can have the same size automorphism groups.
Some codes have automorphism group sizes that are unique to the code for a given length.
There are instances where more than one code can share the same automorphism group size yet have different weight distributions (weight enumerator). This sequence provides the number of automorphism group sizes where this is true for a given length.

Examples

			There are a(18) = 535 automorphism group sizes for the binary self-dual codes of length 2*18 = 36 where codes having different weight distributions share the same automorphism group size.
		

Crossrefs

For self-dual codes see A028362, A003179, A106162, A028363, A106163, A269455, A120373; for automorphism groups see A322299, A322339, A323357.
Showing 1-4 of 4 results.