cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A322357 a(n) = A322354(n) / A322356(n).

Original entry on oeis.org

1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 6, 1, 2, 1, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2018

Keywords

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, Times @@ Power @@@ ({#[[1]] + 2, #[[2]]} & /@ FactorInteger [n])]; rad[n_] := Times @@ (First@# & /@ FactorInteger@n); fun[p_, n_] := If[ PrimeQ[p + 2] && Divisible[n, p + 2], p + 2, 1]; a[n_] := GCD[rad[n], f[rad[n]]]/ Times @@ (fun[#, n] & /@ FactorInteger[n][[;; , 1]]); Array[a, 120] (* Amiram Eldar, Dec 16 2018 *)
  • PARI
    A166590(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] += 2); factorback(f); };
    A322362(n) = gcd(n, A166590(n));
    A007947(n) = factorback(factorint(n)[, 1]);
    A322354(n) = A322362(A007947(n));
    A322356(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(isprime(f[i,1]+2)&&!(n%(f[i,1]+2)), m *= (f[i,1]+2))); (m); };
    A322357(n) = (A322354(n)/A322356(n));

Formula

a(n) = A322354(n) / A322356(n).

A322591 Lexicographically earliest such sequence a that for all i, j, a(i) = a(j) => f(i) = f(j), where f(n) = 0 for odd primes, and A007947(n) for any other number.

Original entry on oeis.org

1, 2, 3, 2, 3, 4, 3, 2, 5, 6, 3, 4, 3, 7, 8, 2, 3, 4, 3, 6, 9, 10, 3, 4, 11, 12, 5, 7, 3, 13, 3, 2, 14, 15, 16, 4, 3, 17, 18, 6, 3, 19, 3, 10, 8, 20, 3, 4, 21, 6, 22, 12, 3, 4, 23, 7, 24, 25, 3, 13, 3, 26, 9, 2, 27, 28, 3, 15, 29, 30, 3, 4, 3, 31, 8, 17, 32, 33, 3, 6, 5, 34, 3, 19, 35, 36, 37, 10, 3, 13, 38, 20, 39, 40, 41, 4, 3, 7, 14, 6, 3, 42, 3, 12, 43
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2018

Keywords

Comments

For all i, j:
a(i) = a(j) => A066086(i) = A066086(j),
a(i) = a(j) => A322354(i) = A322354(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A007947(n) = factorback(factorint(n)[, 1]);
    Aux322591(n) = if((n>2)&&isprime(n),0,A007947(n));
    v322591 = rgs_transform(vector(up_to, n, Aux322591(n)));
    A322591(n) = v322591[n];

A322356 Product of such primes p that both p and p-2 divide n, and p-2 is also prime.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 35
Offset: 1

Views

Author

Antti Karttunen, Dec 16 2018

Keywords

Comments

Product of those distinct greater twin primes (A006512) that divide n for which the corresponding lesser twin prime (A001359) also divides n.

Examples

			For n = 105 = 3*5*7, a(105) = 5*7 = 35.
		

Crossrefs

Programs

  • Mathematica
    f[p_, n_] := If[PrimeQ[p + 2] && Divisible[n, p + 2], p + 2, 1]; a[n_] := Times @@ (f[#, n] & /@ FactorInteger[n][[;; , 1]]); Array[a, 120] (* Amiram Eldar, Dec 16 2018 *)
  • PARI
    A322356(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(isprime(f[i,1]+2)&&!(n%(f[i,1]+2)), m *= (f[i,1]+2))); (m); };

Formula

a(n) = A322354(n) / A322357(n).
A001221(a(n)) = A001222(a(n)) = A322358(n).
Showing 1-3 of 3 results.