A322356 Product of such primes p that both p and p-2 divide n, and p-2 is also prime.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 35
Offset: 1
Keywords
Examples
For n = 105 = 3*5*7, a(105) = 5*7 = 35.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..15015
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Programs
-
Mathematica
f[p_, n_] := If[PrimeQ[p + 2] && Divisible[n, p + 2], p + 2, 1]; a[n_] := Times @@ (f[#, n] & /@ FactorInteger[n][[;; , 1]]); Array[a, 120] (* Amiram Eldar, Dec 16 2018 *)
-
PARI
A322356(n) = { my(f = factor(n), m=1); for(i=1, #f~, if(isprime(f[i,1]+2)&&!(n%(f[i,1]+2)), m *= (f[i,1]+2))); (m); };
Comments