A322362 a(n) = gcd(n, A166590(n)), where A166590 is completely multiplicative with a(p) = p+2 for prime p.
1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 5, 16, 1, 2, 1, 4, 3, 2, 1, 8, 1, 2, 1, 4, 1, 10, 1, 32, 1, 2, 7, 4, 1, 2, 3, 8, 1, 6, 1, 4, 5, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 3, 2, 1, 20, 1, 2, 9, 64, 5, 2, 1, 4, 1, 14, 1, 8, 1, 2, 5, 4, 1, 6, 1, 16, 1, 2, 1, 12, 1, 2, 1, 8, 1, 10, 1, 4, 3, 2, 1, 32, 1, 2, 1, 4, 1, 2, 1, 8, 105
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..100000
Programs
-
Mathematica
a[n_] := If[n == 1, 1, GCD[n, Times@@ ((First[#]+2)^Last[#] &/@FactorInteger[n])]]; Array[a, 120] (* Amiram Eldar, Dec 05 2018~ *)
-
PARI
A166590(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] += 2); factorback(f); }; A322362(n) = gcd(n, A166590(n));