cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322368 Heinz numbers of disconnected integer partitions.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

Differs from A289509 in having 1 and lacking 2, 195, 455, 555, 585...
Also positions of entries > 1 in A305079.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The sequence of all disconnected integer partitions begins: (11), (21), (111), (31), (211), (41), (32), (1111), (221), (311), (51), (2111), (61), (411), (321), (11111), (52), (71), (43), (2211), (81), (3111), (421), (511), (322), (91), (21111), (331), (72), (611), (2221), (53), (4111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[200],Length[csm[primeMS/@primeMS[#]]]>1&]