cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A322367 Number of disconnected or empty integer partitions of n.

Original entry on oeis.org

1, 0, 1, 2, 3, 6, 7, 14, 17, 27, 34, 54, 63, 98, 118, 165, 207, 287, 345, 474, 574, 757, 931, 1212, 1463, 1890, 2292, 2898, 3515, 4413, 5303
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The a(3) = 2 through a(9) = 27 disconnected integer partitions:
  (21)   (31)    (32)     (51)      (43)       (53)        (54)
  (111)  (211)   (41)     (321)     (52)       (71)        (72)
         (1111)  (221)    (411)     (61)       (332)       (81)
                 (311)    (2211)    (322)      (431)       (432)
                 (2111)   (3111)    (331)      (521)       (441)
                 (11111)  (21111)   (421)      (611)       (522)
                          (111111)  (511)      (3221)      (531)
                                    (2221)     (3311)      (621)
                                    (3211)     (4211)      (711)
                                    (4111)     (5111)      (3222)
                                    (22111)    (22211)     (3321)
                                    (31111)    (32111)     (4221)
                                    (211111)   (41111)     (4311)
                                    (1111111)  (221111)    (5211)
                                               (311111)    (6111)
                                               (2111111)   (22221)
                                               (11111111)  (32211)
                                                           (33111)
                                                           (42111)
                                                           (51111)
                                                           (222111)
                                                           (321111)
                                                           (411111)
                                                           (2211111)
                                                           (3111111)
                                                           (21111111)
                                                           (111111111)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]!=1&]],{n,20}]

A322369 Number of strict disconnected or empty integer partitions of n.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 10, 16, 17, 22, 26, 33, 36, 48, 52, 64, 76, 90, 101, 125, 142, 166, 192, 225, 250, 302, 339, 393, 451, 515, 581, 675, 762, 866, 985, 1122, 1255, 1441, 1612, 1823, 2059, 2318, 2591, 2930, 3275, 3668, 4118, 4605, 5125, 5749
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The a(3) = 1 through a(11) = 10 strict disconnected integer partitions:
  (2,1)  (3,1)  (3,2)  (5,1)    (4,3)    (5,3)    (5,4)    (7,3)      (6,5)
                (4,1)  (3,2,1)  (5,2)    (7,1)    (7,2)    (9,1)      (7,4)
                                (6,1)    (4,3,1)  (8,1)    (5,3,2)    (8,3)
                                (4,2,1)  (5,2,1)  (4,3,2)  (5,4,1)    (9,2)
                                                  (5,3,1)  (6,3,1)    (10,1)
                                                  (6,2,1)  (7,2,1)    (5,4,2)
                                                           (4,3,2,1)  (6,4,1)
                                                                      (7,3,1)
                                                                      (8,2,1)
                                                                      (5,3,2,1)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,Length[zsm[#]]!=1]&]],{n,30}]
Showing 1-2 of 2 results.