A322367
Number of disconnected or empty integer partitions of n.
Original entry on oeis.org
1, 0, 1, 2, 3, 6, 7, 14, 17, 27, 34, 54, 63, 98, 118, 165, 207, 287, 345, 474, 574, 757, 931, 1212, 1463, 1890, 2292, 2898, 3515, 4413, 5303
Offset: 0
The a(3) = 2 through a(9) = 27 disconnected integer partitions:
(21) (31) (32) (51) (43) (53) (54)
(111) (211) (41) (321) (52) (71) (72)
(1111) (221) (411) (61) (332) (81)
(311) (2211) (322) (431) (432)
(2111) (3111) (331) (521) (441)
(11111) (21111) (421) (611) (522)
(111111) (511) (3221) (531)
(2221) (3311) (621)
(3211) (4211) (711)
(4111) (5111) (3222)
(22111) (22211) (3321)
(31111) (32111) (4221)
(211111) (41111) (4311)
(1111111) (221111) (5211)
(311111) (6111)
(2111111) (22221)
(11111111) (32211)
(33111)
(42111)
(51111)
(222111)
(321111)
(411111)
(2211111)
(3111111)
(21111111)
(111111111)
Cf.
A054921,
A218970,
A286518,
A322335,
A304714,
A304716,
A305078,
A305079,
A322306,
A322307,
A322337,
A322338,
A322368,
A322369.
-
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
Table[Length[Select[IntegerPartitions[n],Length[zsm[#]]!=1&]],{n,20}]
A322369
Number of strict disconnected or empty integer partitions of n.
Original entry on oeis.org
1, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 10, 16, 17, 22, 26, 33, 36, 48, 52, 64, 76, 90, 101, 125, 142, 166, 192, 225, 250, 302, 339, 393, 451, 515, 581, 675, 762, 866, 985, 1122, 1255, 1441, 1612, 1823, 2059, 2318, 2591, 2930, 3275, 3668, 4118, 4605, 5125, 5749
Offset: 0
The a(3) = 1 through a(11) = 10 strict disconnected integer partitions:
(2,1) (3,1) (3,2) (5,1) (4,3) (5,3) (5,4) (7,3) (6,5)
(4,1) (3,2,1) (5,2) (7,1) (7,2) (9,1) (7,4)
(6,1) (4,3,1) (8,1) (5,3,2) (8,3)
(4,2,1) (5,2,1) (4,3,2) (5,4,1) (9,2)
(5,3,1) (6,3,1) (10,1)
(6,2,1) (7,2,1) (5,4,2)
(4,3,2,1) (6,4,1)
(7,3,1)
(8,2,1)
(5,3,2,1)
Cf.
A054921,
A218970,
A286518,
A304714,
A304716,
A305078,
A305079,
A322306,
A322307,
A322335,
A322337,
A322338,
A322367,
A322368.
-
zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,Length[zsm[#]]!=1]&]],{n,30}]
Showing 1-2 of 2 results.
Comments