A322393 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with edge-connectivity k, for 0 <= k <= n.
1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 6, 1, 0, 0, 0, 0, 7, 1, 2, 1, 0, 0, 0, 14, 1, 0, 0, 0, 0, 0, 0, 17, 1, 2, 1, 1, 0, 0, 0, 0, 27, 1, 1, 1, 0, 0, 0, 0, 0, 0, 34, 1, 3, 2, 1, 1, 0, 0, 0, 0, 0, 54, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 1, 4, 4, 3, 1, 1
Offset: 0
Examples
Triangle begins: 1 0 1 1 1 0 2 1 0 0 3 1 1 0 0 6 1 0 0 0 0 7 1 2 1 0 0 0 14 1 0 0 0 0 0 0 17 1 2 1 1 0 0 0 0 27 1 1 1 0 0 0 0 0 0 34 1 3 2 1 1 0 0 0 0 0 54 2 0 0 0 0 0 0 0 0 0 0 63 1 4 4 3 1 1 0 0 0 0 0 0 Row 6 {7, 1, 2, 1} counts the following integer partitions: (51) (6) (33) (222) (321) (42) (411) (2211) (3111) (21111) (111111)
Links
- Wikipedia, k-edge-connected graph
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; edgeConn[y_]:=Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[primeMS/@#]]!=1&] Table[Length[Select[IntegerPartitions[n],edgeConn[#]==k&]],{n,10},{k,0,n}]
Comments