cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A322393 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with edge-connectivity k, for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 6, 1, 0, 0, 0, 0, 7, 1, 2, 1, 0, 0, 0, 14, 1, 0, 0, 0, 0, 0, 0, 17, 1, 2, 1, 1, 0, 0, 0, 0, 27, 1, 1, 1, 0, 0, 0, 0, 0, 0, 34, 1, 3, 2, 1, 1, 0, 0, 0, 0, 0, 54, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 1, 4, 4, 3, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Comments

The edge connectivity of an integer partition is the minimum number of parts that must be removed so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			Triangle begins:
   1
   0  1
   1  1  0
   2  1  0  0
   3  1  1  0  0
   6  1  0  0  0  0
   7  1  2  1  0  0  0
  14  1  0  0  0  0  0  0
  17  1  2  1  1  0  0  0  0
  27  1  1  1  0  0  0  0  0  0
  34  1  3  2  1  1  0  0  0  0  0
  54  2  0  0  0  0  0  0  0  0  0  0
  63  1  4  4  3  1  1  0  0  0  0  0  0
Row 6 {7, 1, 2, 1} counts the following integer partitions:
  (51)      (6)  (33)  (222)
  (321)          (42)
  (411)
  (2211)
  (3111)
  (21111)
  (111111)
		

Crossrefs

Row sums are A000041. First column is A322367. Second column is A322391.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[primeMS/@#]]!=1&]
    Table[Length[Select[IntegerPartitions[n],edgeConn[#]==k&]],{n,10},{k,0,n}]

A322368 Heinz numbers of disconnected integer partitions.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 14, 15, 16, 18, 20, 22, 24, 26, 28, 30, 32, 33, 34, 35, 36, 38, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 58, 60, 62, 64, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 82, 84, 85, 86, 88, 90, 92, 93, 94, 95, 96, 98, 99, 100, 102, 104
Offset: 1

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

Differs from A289509 in having 1 and lacking 2, 195, 455, 555, 585...
Also positions of entries > 1 in A305079.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The sequence of all disconnected integer partitions begins: (11), (21), (111), (31), (211), (41), (32), (1111), (221), (311), (51), (2111), (61), (411), (321), (11111), (52), (71), (43), (2211), (81), (3111), (421), (511), (322), (91), (21111), (331), (72), (611), (2221), (53), (4111).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    Select[Range[200],Length[csm[primeMS/@primeMS[#]]]>1&]

A322369 Number of strict disconnected or empty integer partitions of n.

Original entry on oeis.org

1, 0, 0, 1, 1, 2, 2, 4, 4, 6, 7, 10, 10, 16, 17, 22, 26, 33, 36, 48, 52, 64, 76, 90, 101, 125, 142, 166, 192, 225, 250, 302, 339, 393, 451, 515, 581, 675, 762, 866, 985, 1122, 1255, 1441, 1612, 1823, 2059, 2318, 2591, 2930, 3275, 3668, 4118, 4605, 5125, 5749
Offset: 0

Views

Author

Gus Wiseman, Dec 04 2018

Keywords

Comments

An integer partition is connected if the prime factorizations of its parts form a connected hypergraph. It is disconnected if it can be separated into two or more integer partitions with relatively prime products. For example, the integer partition (654321) has three connected components: (6432)(5)(1).

Examples

			The a(3) = 1 through a(11) = 10 strict disconnected integer partitions:
  (2,1)  (3,1)  (3,2)  (5,1)    (4,3)    (5,3)    (5,4)    (7,3)      (6,5)
                (4,1)  (3,2,1)  (5,2)    (7,1)    (7,2)    (9,1)      (7,4)
                                (6,1)    (4,3,1)  (8,1)    (5,3,2)    (8,3)
                                (4,2,1)  (5,2,1)  (4,3,2)  (5,4,1)    (9,2)
                                                  (5,3,1)  (6,3,1)    (10,1)
                                                  (6,2,1)  (7,2,1)    (5,4,2)
                                                           (4,3,2,1)  (6,4,1)
                                                                      (7,3,1)
                                                                      (8,2,1)
                                                                      (5,3,2,1)
		

Crossrefs

Programs

  • Mathematica
    zsm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[Less@@#,GCD@@s[[#]]]>1&]},If[c=={},s,zsm[Sort[Append[Delete[s,List/@c[[1]]],LCM@@s[[c[[1]]]]]]]]];
    Table[Length[Select[IntegerPartitions[n],And[UnsameQ@@#,Length[zsm[#]]!=1]&]],{n,30}]
Showing 1-3 of 3 results.