A322387 Number of 2-vertex-connected integer partitions of n.
0, 0, 0, 0, 0, 1, 0, 1, 1, 3, 1, 6, 2, 10, 8, 13, 9, 26, 14, 35, 28, 50, 37, 77, 54, 101, 84, 138, 110, 205, 149, 252, 222, 335, 287, 455, 375, 577, 522, 740, 657, 985
Offset: 1
Examples
The a(14) = 10 2-vertex-connected integer partitions: (14) (8,6) (6,4,4) (6,3,3,2) (6,2,2,2,2) (10,4) (6,6,2) (6,4,2,2) (12,2) (10,2,2)
Links
- Wikipedia, k-vertex-connected graph
Crossrefs
Programs
-
Mathematica
primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]]; vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]]; Table[Length[Select[IntegerPartitions[n],vertConn[#]>1&]],{n,30}]
Extensions
a(41)-a(42) from Jinyuan Wang, Jun 20 2020
Comments