cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A322395 Number of labeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.

Original entry on oeis.org

1, 1, 1, 4, 26, 548, 22504, 1708336, 241874928, 65285161232, 34305887955616, 35573982726480064, 73308270568902715136, 301210456065963448091072, 2471487759846321319412778624, 40526856087731237340916330352896, 1328570640536613080046570271722309632
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 16;
    seq[n_] := Module[{v, p, q, c}, v[_] = 0; p = x*D[#, x]& @ Log[Sum[ 2^Binomial[k, 2]*x^k/k!, {k, 0, n}] + O[x]^(n + 1)]; q = x*E^p; p -= q; For[k = 3, k <= n, k++, c = Coefficient[p, x, k]; v[k] = c*(k - 1)!; p -= c*q^k]; Join[{0}, Array[v, n]]];
    A095983 = seq[nmax];
    a[n_] := If[n<3, 1, n+Sum[Binomial[n, k]*A095983[[k+1]]*k^(n-k), {k, 1, n}]];
    a /@ Range[0, nmax] (* Jean-François Alcover, Jan 07 2021, after Andrew Howroyd *)

Formula

a(n) = n + Sum_{k=1..n} binomial(n,k)*A095983(k)*k^(n-k) for n >= 3. - Andrew Howroyd, Dec 07 2018

Extensions

a(6)-a(16) from Andrew Howroyd, Dec 07 2018

A322396 Number of unlabeled simple connected graphs with n vertices whose bridges are all leaves, meaning at least one end of any bridge is an endpoint of the graph.

Original entry on oeis.org

1, 1, 1, 2, 5, 18, 98, 779, 10589, 255790, 11633297, 1004417286, 163944008107, 50324877640599, 29001521193534445, 31396727025729968365, 63969154112074956299242, 245871360738448777028919520, 1787330701747389106609369225312, 24636017249593067184544456944967278
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Crossrefs

Programs

  • PARI
    \\ See A004115 for graphsSeries and A339645 for combinatorial species functions.
    bridgelessGraphs(n)={my(gc=sLog(graphsSeries(n)), gcr=sPoint(gc)); sSolve( gc + gcr^2/2 - sRaise(gcr,2)/2, x*sv(1)*sExp(gcr) )}
    cycleIndexSeries(n)={1+sSubstOp(bridgelessGraphs(n), symGroupSeries(n))}
    NumUnlabeledObjsSeq(cycleIndexSeries(15)) \\ Andrew Howroyd, Dec 31 2020

Extensions

a(6)-a(10) from Andrew Howroyd, Dec 08 2018
Terms a(11) and beyond from Andrew Howroyd, Dec 31 2020

A322400 Heinz numbers of integer partitions with vertex-connectivity 1.

Original entry on oeis.org

3, 5, 7, 9, 11, 17, 19, 21, 23, 25, 27, 31, 41, 49, 53, 57, 59, 63, 67, 81, 83, 97, 103, 109, 115, 121, 125, 127, 131, 133, 147, 157, 159, 171, 179, 189, 191, 211, 227, 241, 243, 277, 283, 289, 311, 331, 343, 353, 361, 367, 371, 377, 393, 399, 401, 419, 431
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Comments

The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
The vertex-connectivity of an integer partition is the minimum number of primes that must be divided out (and any parts then equal to 1 removed) so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			The sequence of all integer partitions with vertex-connectivity 1 begins: (2), (3), (4), (2,2), (5), (7), (8), (4,2), (9), (3,3), (2,2,2), (11), (13), (4,4), (16), (8,2), (17), (4,2,2), (19), (2,2,2,2), (23), (25), (27), (29), (9,3), (5,5), (3,3,3), (31), (32), (8,4), (4,4,2), (37), (16,2), (8,2,2), (41), (4,2,2,2), (43).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    vertConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Min@@Length/@Select[Subsets[Union@@primeMS/@y],Function[del,Length[csm[DeleteCases[DeleteCases[primeMS/@y,Alternatives@@del,{2}],{}]]]!=1]]];
    Select[Range[100],vertConn[primeMS[#]]==1&]

A322399 Number of non-isomorphic 2-edge-connected clutters spanning n vertices.

Original entry on oeis.org

0, 0, 2, 12, 149
Offset: 1

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Comments

A clutter is a connected antichain of sets. It is 2-edge-connected if it cannot be disconnected by removing any single edge. Compare to blobs or 2-vertex-connected clutters (A304887).

Examples

			Non-isomorphic representatives of the a(4) = 12 clutters:
  {{1,4},{2,3,4}}
  {{1,3,4},{2,3,4}}
  {{1,4},{2,4},{3,4}}
  {{1,3},{1,4},{2,3,4}}
  {{1,2},{1,3,4},{2,3,4}}
  {{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{2,4},{3,4}}
  {{1,4},{2,3},{2,4},{3,4}}
  {{1,2},{1,3},{1,4},{2,3,4}}
  {{1,3},{1,4},{2,3},{2,4},{3,4}}
  {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  {{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}}
		

Crossrefs

A322401 Number of strict integer partitions of n with edge-connectivity 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 5, 1, 6, 2, 7, 2, 13, 3, 14, 6, 18, 8, 28, 11, 33, 19, 38, 22, 54, 28, 71, 44, 83, 53, 110, 68, 134, 98, 154, 120, 209, 145, 253, 191, 302, 244, 385, 299, 459, 390, 553, 483, 693, 578
Offset: 0

Views

Author

Gus Wiseman, Dec 06 2018

Keywords

Comments

The edge-connectivity of an integer partition is the minimum number of parts that must be removed so that the prime factorizations of the remaining parts form a disconnected (or empty) hypergraph.

Examples

			The a(30) = 11 strict integer partitions with edge-connectivity 1:
  (30),
  (10,9,6,5), (12,10,5,3), (14,7,6,3), (15,6,5,4), (15,10,3,2),
  (9,8,6,4,3), (10,9,6,3,2), (12,9,4,3,2), (15,6,4,3,2),
  (10,6,5,4,3,2).
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    edgeConn[y_]:=If[Length[csm[primeMS/@y]]!=1,0,Length[y]-Max@@Length/@Select[Union[Subsets[y]],Length[csm[primeMS/@#]]!=1&]];
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&edgeConn[#]==1&]],{n,30}]
Showing 1-5 of 5 results.