cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322398 Triangle of the coefficients of Touchard's chord enumerating polynomials, [x^k] S(n,x), 0 <= k <= n*(n-1)/2.

Original entry on oeis.org

1, 1, 1, 2, 4, 3, 1, 5, 15, 21, 18, 10, 4, 1, 14, 56, 112, 148, 143, 109, 68, 35, 15, 5, 1, 42, 210, 540, 945, 1255, 1353, 1236, 984, 696, 441, 250, 126, 56, 21, 6, 1, 132, 792, 2475, 5335, 8866, 12112, 14182, 14654, 13646, 11619, 9131, 6662, 4529, 2870, 1691, 922, 462, 210, 84, 28, 7, 1, 429, 3003
Offset: 1

Views

Author

R. J. Mathar, Dec 06 2018

Keywords

Examples

			The triangle starts:
    1;
    1,    1;
    2,    4,    3,    1;
    5,   15,   21,   18,   10,    4,    1;
   14,   56,  112,  148,  143,  109,   68,   35,   15,    5,    1;
   ...
		

Crossrefs

Cf. A000108 (leading column), A001791 (2nd column), A000698 (row sums).

Programs

  • Maple
    # page 3 prior to equation 2
    Dpq := proc(p,q)
        (p-q+1)*binomial(p+q,q)/(p+1) ;
    end proc:
    # page 12 top
    fp1 := proc(p,x)
        add( (-1)^i*Dpq(2*p-i,i)*x^((p+1-i)*(p-i)/2),i=0..p) ;
    end proc:
    # page 12
    gnx := proc(n,x)
        fp1(n,x)/(x-1)^n ;
        taylor(%,x=0,1+n*(n+1)/2) ;
        convert(%,polynom) ;
    end proc:
    Snx := proc(n,x)
        if n =0 then
            0;
        elif n =1 then
            1;
        else
            # recurrence page 17
            gnx(n,x)-add( gnx(n-i,x)*procname(i,x),i=1..n-1) ;
            taylor(%,x=1,1+n*(n+1)/2) ;
            convert(%,polynom) ;
            expand(%) ;
        end if;
    end proc:
    for n from 1 to 8 do
        S := Snx(n,x) ;
        seq( coeff(S,x,i),i=0..n*(n-1)/2) ;
        printf("\n") ;
    end do:
  • Mathematica
    Dpq[p_, q_] := (p - q + 1)*Binomial[p + q, q]/(p + 1);
    fp1[p_, x_] := Sum[(-1)^i*Dpq[2*p - i, i]*x^((p + 1 - i)*(p - i)/2), {i, 0, p}];
    gnx[n_, x_] := fp1[n, x]/(x - 1)^n // Series[#, {x, 0, 1 + n*(n + 1)/2}]& // Normal;
    Snx[n_, x_] := Snx[n, x] = Which[n == 0, 0, n == 1, 1, True, gnx[n, x] - Sum[gnx[n - i, x]*Snx[i, x], {i, 1, n - 1}] // Series[#, {x, 1, 1 + n*(n + 1)/2}]& // Normal];
    Table[CoefficientList[Snx[n, x], x], {n, 1, 8}] // Flatten (* Jean-François Alcover, Jul 01 2023, after R. J. Mathar *)