A322398 Triangle of the coefficients of Touchard's chord enumerating polynomials, [x^k] S(n,x), 0 <= k <= n*(n-1)/2.
1, 1, 1, 2, 4, 3, 1, 5, 15, 21, 18, 10, 4, 1, 14, 56, 112, 148, 143, 109, 68, 35, 15, 5, 1, 42, 210, 540, 945, 1255, 1353, 1236, 984, 696, 441, 250, 126, 56, 21, 6, 1, 132, 792, 2475, 5335, 8866, 12112, 14182, 14654, 13646, 11619, 9131, 6662, 4529, 2870, 1691, 922, 462, 210, 84, 28, 7, 1, 429, 3003
Offset: 1
Examples
The triangle starts: 1; 1, 1; 2, 4, 3, 1; 5, 15, 21, 18, 10, 4, 1; 14, 56, 112, 148, 143, 109, 68, 35, 15, 5, 1; ...
Links
- Jean-François Alcover, Table of n, a(n) for n = 1..1350 (20 rows)
- J. Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math., 4 (1952), 2-25, S_n(x).
Programs
-
Maple
# page 3 prior to equation 2 Dpq := proc(p,q) (p-q+1)*binomial(p+q,q)/(p+1) ; end proc: # page 12 top fp1 := proc(p,x) add( (-1)^i*Dpq(2*p-i,i)*x^((p+1-i)*(p-i)/2),i=0..p) ; end proc: # page 12 gnx := proc(n,x) fp1(n,x)/(x-1)^n ; taylor(%,x=0,1+n*(n+1)/2) ; convert(%,polynom) ; end proc: Snx := proc(n,x) if n =0 then 0; elif n =1 then 1; else # recurrence page 17 gnx(n,x)-add( gnx(n-i,x)*procname(i,x),i=1..n-1) ; taylor(%,x=1,1+n*(n+1)/2) ; convert(%,polynom) ; expand(%) ; end if; end proc: for n from 1 to 8 do S := Snx(n,x) ; seq( coeff(S,x,i),i=0..n*(n-1)/2) ; printf("\n") ; end do:
-
Mathematica
Dpq[p_, q_] := (p - q + 1)*Binomial[p + q, q]/(p + 1); fp1[p_, x_] := Sum[(-1)^i*Dpq[2*p - i, i]*x^((p + 1 - i)*(p - i)/2), {i, 0, p}]; gnx[n_, x_] := fp1[n, x]/(x - 1)^n // Series[#, {x, 0, 1 + n*(n + 1)/2}]& // Normal; Snx[n_, x_] := Snx[n, x] = Which[n == 0, 0, n == 1, 1, True, gnx[n, x] - Sum[gnx[n - i, x]*Snx[i, x], {i, 1, n - 1}] // Series[#, {x, 1, 1 + n*(n + 1)/2}]& // Normal]; Table[CoefficientList[Snx[n, x], x], {n, 1, 8}] // Flatten (* Jean-François Alcover, Jul 01 2023, after R. J. Mathar *)