A322403 Square array T(n, k) read by antidiagonals, n >= 0 and k >= 0: the lengths of runs in binary expansion of T(n, k) are obtained by multiplying those of n and of k (see Comments for precise definition).
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 3, 2, 3, 0, 0, 4, 12, 12, 4, 0, 0, 5, 4, 15, 4, 5, 0, 0, 6, 42, 48, 48, 42, 6, 0, 0, 7, 6, 51, 16, 51, 6, 7, 0, 0, 8, 56, 60, 292, 292, 60, 56, 8, 0, 0, 9, 8, 63, 12, 5, 12, 63, 8, 9, 0, 0, 10, 150, 192, 448, 438, 438, 448, 192
Offset: 0
Examples
Array T(n, k) begins (in decimal): n\k| 0 1 2 3 4 5 6 7 8 9 10 ---+-------------------------------------------------------- 0| 0 0 0 0 0 0 0 0 0 0 0 1| 0 1 2 3 4 5 6 7 8 9 10 2| 0 2 2 12 4 42 6 56 8 150 10 3| 0 3 12 15 48 51 60 63 192 195 204 4| 0 4 4 48 16 292 12 448 64 2124 36 5| 0 5 42 51 292 5 438 455 2184 9 2730 6| 0 6 6 60 12 438 30 504 24 3294 54 7| 0 7 56 63 448 455 504 511 3584 3591 3640 8| 0 8 8 192 64 2184 24 3584 512 33048 136 Array T(n, k) begins (in binary): n\k| 0 1 10 11 100 101 110 ----+--------------------------------------------------------------- 0| 0 0 0 0 0 0 0 1| 0 1 10 11 100 101 110 10| 0 10 10 1100 100 101010 110 11| 0 11 1100 1111 110000 110011 111100 100| 0 100 100 110000 10000 100100100 1100 101| 0 101 101010 110011 100100100 101 110110110 110| 0 110 110 111100 1100 110110110 11110 111| 0 111 111000 111111 111000000 111000111 111111000 1000| 0 1000 1000 11000000 1000000 100010001000 11000
Programs
-
PARI
T(n,k) = my (v=0, p=1, rn=n, rk=k, b=if ((max(n,1)%2)&&(max(k,1)%2), 1, 0)); while (1, my (vn=if (rn==0, 0, valuation(rn+(rn%2), 2)), vk=if(rk==0, 0, valuation(rk+(rk%2), 2)), w=vn*vk); v+=b*p*(2^w-1); rn\=2^vn; rk\=2^vk; if (rn==0 && rk==0, return (v), rn==0, rn=n, rk==0, rk=k); p*=2^w; b=1-b)
Formula
For any m >= 0, n >= 0 and k >= 0:
- T(n, k) = T(k, n) (T is commutative),
- T(m, T(n, k)) = T(T(m, n), k) (T is associative),
- T(n, 0) = 0 (0 is an absorbing element for T),
- T(n, 1) = n (1 is an neutral element for T),
- T(n, 3) = A001196(n),
- T(n, 7) = A097254(n+1),
- T(n, 15) = A097262(n),
- T(n, n) = A322149(n),
- T(2^n - 1, 2^k - 1) = 2^(n*k) - 1.
- T(2^n, 2^k) = 2^(n*k) when n > 0 and k > 0,
- T(n, k) is odd iff both n and k are odd.
Comments