cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A322421 Primes of the form A322420(k) or the sum of the first k*(k+1) primes.

Original entry on oeis.org

5, 41, 197, 44683, 360979, 3619807, 5353841, 25106701, 47525059, 159781073, 188024357, 243458497, 445838927, 1015334371, 2018174117, 2079737563, 4925466041, 5294877781, 6383922529, 6531129499, 6680974507, 7635495793
Offset: 1

Views

Author

Ray Chandler, Dec 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[Prime[k], {k, n}]; Select[
    Table[f[n*(n + 1)], {n, 0, 240}], PrimeQ]

Formula

A109726 Divide primes in groups with 2n elements and add together.

Original entry on oeis.org

0, 5, 36, 156, 442, 954, 1854, 3154, 4998, 7514, 10784, 14786, 19932, 26148, 33448, 42340, 52208, 64322, 77898, 93116, 110224, 129978, 151990, 175224, 201584, 231272, 263500, 298590, 335856, 376616, 420984, 469894, 521740, 577304, 634990
Offset: 0

Views

Author

Giovanni Teofilatto, Aug 10 2005

Keywords

Comments

First difference of A322420.

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[Prime[k], {k, n}]; Table[f[n*(n + 1)] - f[n*(n - 1)], {n, 0, 34}]

Formula

a(n) = A007504(n*(n+1)) - A007504(n*(n-1)).

Extensions

Edited and extended by Ray Chandler, Aug 11 2005

A322422 Numbers k such that the sum of the first k*(k+1) primes is prime.

Original entry on oeis.org

1, 2, 3, 11, 18, 31, 34, 49, 57, 76, 79, 84, 97, 118, 139, 140, 172, 175, 183, 184, 185, 191, 208, 218, 221, 232, 233, 247, 262, 266, 294, 313, 315, 323, 333, 334, 339, 344, 351, 361, 366, 372, 407, 413, 436, 445, 461, 473, 478, 500, 545, 546, 556, 564, 577
Offset: 1

Views

Author

Ray Chandler, Dec 07 2018

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Sum[Prime[k], {k, n}]; Select[Range[500],
    PrimeQ[f[#*(# + 1)]] &]

Formula

A322421(n) = A322420(a(n)) = A007504(A002378(a(n))).
Showing 1-3 of 3 results.