A322427 Sum T(n,k) of k-th smallest parts of all compositions of n; triangle T(n,k), n>=1, 1<=k<=n, read by rows.
1, 3, 1, 6, 5, 1, 12, 12, 7, 1, 22, 28, 20, 9, 1, 42, 54, 54, 30, 11, 1, 79, 106, 115, 92, 42, 13, 1, 151, 200, 239, 218, 144, 56, 15, 1, 291, 376, 471, 486, 378, 212, 72, 17, 1, 566, 708, 904, 1014, 908, 612, 298, 90, 19, 1, 1106, 1346, 1709, 2030, 2014, 1584, 939, 404, 110, 21, 1
Offset: 1
Examples
The 4 compositions of 3 are: 111, 12, 21, 3. The sums of k-th smallest parts for k=1..3 give: 1+1+1+3 = 6, 1+2+2+0 = 5, 1+0+0+0 = 1. Triangle T(n,k) begins: 1; 3, 1; 6, 5, 1; 12, 12, 7, 1; 22, 28, 20, 9, 1; 42, 54, 54, 30, 11, 1; 79, 106, 115, 92, 42, 13, 1; 151, 200, 239, 218, 144, 56, 15, 1; 291, 376, 471, 486, 378, 212, 72, 17, 1; 566, 708, 904, 1014, 908, 612, 298, 90, 19, 1; ...
Links
- Alois P. Heinz, Rows n = 1..50, flattened
Programs
-
Maple
b:= proc(n, l) option remember; `if`(n=0, add(l[i]*x^i, i=1..nops(l)), add(b(n-j, sort([l[], j])), j=1..n)) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n, [])): seq(T(n), n=1..12);
-
Mathematica
b[n_, l_] := b[n, l] = If[n == 0, Sum[l[[i]] x^i, {i, 1, Length[l]}], Sum[b[n - j, Sort[Append[l, j]]], {j, 1, n}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][ b[n, {}]]; Array[T, 12] // Flatten (* Jean-François Alcover, Dec 29 2018, after Alois P. Heinz *)