A322435 Number of pairs of factorizations of n into factors > 1 where no factor of the second divides any factor of the first.
1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 1, 1, 5, 0, 3, 0, 3, 1, 1, 0, 7, 1, 1, 2, 3, 0, 4, 0, 7, 1, 1, 1, 15, 0, 1, 1, 7, 0, 4, 0, 3, 3, 1, 0, 16, 1, 3, 1, 3, 0, 7, 1, 7, 1, 1, 0, 18, 0, 1, 3, 16, 1, 4, 0, 3, 1, 4, 0, 32, 0, 1, 3, 3, 1, 4, 0, 16, 5, 1, 0, 18, 1
Offset: 1
Keywords
Examples
The a(36) = 15 pairs of factorizations: (2*2*3*3)|(4*9) (2*2*3*3)|(6*6) (2*2*3*3)|(36) (2*2*9)|(6*6) (2*2*9)|(36) (2*3*6)|(4*9) (2*3*6)|(36) (2*18)|(36) (3*3*4)|(6*6) (3*3*4)|(36) (3*12)|(36) (4*9)|(6*6) (4*9)|(36) (6*6)|(4*9) (6*6)|(36)
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[Tuples[facs[n],2],!Or@@Divisible@@@Tuples[#]&]],{n,100}]