cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A320632 Numbers k such that there exists a pair of factorizations of k into factors > 1 where no factor of one divides any factor of the other.

Original entry on oeis.org

36, 60, 72, 84, 90, 100, 108, 120, 126, 132, 140, 144, 150, 156, 168, 180, 196, 198, 200, 204, 210, 216, 220, 225, 228, 234, 240, 252, 260, 264, 270, 276, 280, 288, 294, 300, 306, 308, 312, 315, 324, 330, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 390
Offset: 1

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Comments

Positions of nonzero terms in A322437 or A322438.
Mats Granvik has conjectured that these are all the positive integers k such that sigma_0(k) - 2 > (bigomega(k) - 1) * omega(k), where sigma_0 = A000005, omega = A001221, and bigomega = A001222. - Gus Wiseman, Nov 12 2019
Numbers with more semiprime divisors than prime divisors. - Wesley Ivan Hurt, Jun 10 2021

Examples

			An example of such a pair for 36 is (4*9)|(6*6).
		

Crossrefs

The following are additional cross-references relating to Granvik's conjecture.
bigomega(n) * omega(n) is A113901(n).
(bigomega(n) - 1) * omega(n) is A307409(n).
sigma_0(n) - bigomega(n) * omega(n) is A328958(n).
sigma_0(n) - 2 - (omega(n) - 1) * nu(n) is A328959(n).

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Select[Range[100],Select[Subsets[facs[#],{2}],And[!Or@@Divisible@@@Tuples[#],!Or@@Divisible@@@Reverse/@Tuples[#]]&]!={}&]
  • PARI
    factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z,Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf,d); z = factorizations(n/d, d, newf, z))); (z));
    is_ndf_pair(fac1,fac2) = { for(i=1,#fac1,for(j=1,#fac2,if(!(fac1[i]%fac2[j])||!(fac2[j]%fac1[i]),return(0)))); (1); };
    has_at_least_one_ndfpair(z) = { for(i=1,#z,for(j=i+1,#z,if(is_ndf_pair(z[i],z[j]),return(1)))); (0); };
    isA320632(n) = has_at_least_one_ndfpair(Vec(factorizations(n))); \\ Antti Karttunen, Dec 10 2020

A322439 Number of ordered pairs of integer partitions of n where no part of the first is greater than any part of the second.

Original entry on oeis.org

1, 1, 3, 5, 11, 15, 33, 42, 82, 114, 195, 258, 466, 587, 954, 1317, 2021, 2637, 4124, 5298, 7995, 10565, 15075, 19665, 28798, 36773, 51509, 67501, 93060, 119299, 165589, 209967, 285535, 366488, 487536, 622509, 833998, 1048119, 1380410, 1754520, 2291406, 2876454
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(5) = 15 pairs of integer partitions:
      (5)|(5)
     (41)|(5)
     (32)|(5)
    (311)|(5)
    (221)|(5)
    (221)|(32)
   (2111)|(5)
   (2111)|(32)
  (11111)|(5)
  (11111)|(41)
  (11111)|(32)
  (11111)|(311)
  (11111)|(221)
  (11111)|(2111)
  (11111)|(11111)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          g(n, i-1) +g(n-i, min(i, n-i)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(g(n, i)*b(n-i, i), i=1..n))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 09 2018
  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions[n],2],Max@@First[#]<=Min@@Last[#]&]],{n,20}]
    (* Second program: *)
    g[n_, i_] := g[n, i] = If[n == 0 || i == 1, 1, g[n, i - 1] + g[n - i, Min[i, n - i]]];
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := a[n] = If[n == 0, 1, Sum[g[n, i]*b[n - i, i], {i, 1, n}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 17 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k = 1..n} A026820(n,k) * A026794(n,k).
a(n) = A000041(2n) - A362051(n) for n>=1. - Alois P. Heinz, Apr 27 2023

A322442 Number of pairs of set partitions of {1,...,n} where every block of one is a subset or superset of some block of the other.

Original entry on oeis.org

1, 1, 4, 25, 195, 1894, 22159, 303769, 4790858, 85715595, 1720097275, 38355019080, 942872934661, 25383601383937, 744118939661444, 23635548141900445, 809893084668253151, 29822472337116844174, 1175990509568611058299, 49504723853840395163221, 2218388253903492656783562
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(3) = 25 pairs of set partitions (these are actually all pairs of set partitions of {1,2,3}):
  (1)(2)(3)|(1)(2)(3)
  (1)(2)(3)|(1)(23)
  (1)(2)(3)|(12)(3)
  (1)(2)(3)|(13)(2)
  (1)(2)(3)|(123)
    (1)(23)|(1)(2)(3)
    (1)(23)|(1)(23)
    (1)(23)|(12)(3)
    (1)(23)|(13)(2)
    (1)(23)|(123)
    (12)(3)|(1)(2)(3)
    (12)(3)|(1)(23)
    (12)(3)|(12)(3)
    (12)(3)|(13)(2)
    (12)(3)|(123)
    (13)(2)|(1)(2)(3)
    (13)(2)|(1)(23)
    (13)(2)|(12)(3)
    (13)(2)|(13)(2)
    (13)(2)|(123)
      (123)|(1)(2)(3)
      (123)|(1)(23)
      (123)|(12)(3)
      (123)|(13)(2)
      (123)|(123)
Non-isomorphic representatives of the pairs of set partitions of {1,2,3,4} for which the condition fails:
    (12)(34)|(13)(24)
    (12)(34)|(1)(3)(24)
  (1)(2)(34)|(13)(24)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    costabQ[s_,t_]:=And@@Cases[s,x_:>Select[t,SubsetQ[x,#]||SubsetQ[#,x]&]!={}];
    Table[Length[Select[Tuples[sps[Range[n]],2],And[costabQ@@#,costabQ@@Reverse[#]]&]],{n,5}]
  • PARI
    F(x)={my(bell=(exp(y*(exp(x) - 1))  )); subst(serlaplace( serconvol(bell, bell)), y, exp(exp(x) - 1)-1)}
    seq(n) = {my(x=x + O(x*x^n)); Vec(serlaplace( exp( 2*exp(exp(x) - 1) - exp(x) - 1) * F(x) ))} \\ Andrew Howroyd, Jan 19 2024

Formula

E.g.f.: exp(exp(x)-1) * (2*B(x) - 1) where B(x) is the e.g.f. of A319884. - Andrew Howroyd, Jan 19 2024

Extensions

a(8) onwards from Andrew Howroyd, Jan 19 2024

A322437 Number of unordered pairs of factorizations of n into factors > 1 where no factor of one divides any factor of the other.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Comments

First differs from A322438 at a(144) = 3, A322438(144) = 4.
From Antti Karttunen, Dec 11 2020: (Start)
Zeros occur on numbers that are either of the form p^k, or q * p^k, or p*q*r, for some primes p, q, r, and exponent k >= 0. [Note also that in all these cases, when x > 1, A307408(x) = 2+A307409(x) = 2 + (A001222(x) - 1)*A001221(x) = A000005(x)].
Proof:
It is easy to see that for such numbers it is not possible to obtain two such distinct factorizations, that no factor of the other would not divide some factor of the other.
Conversely, the complement set of above is formed of such composites n that have at least one unitary divisor that is either of the form
(1) p^x * q^y, with x, y >= 2,
or
(2) p^x * q^y * r^z, with x >= 2, and y, z >= 1,
or
(3) p^x * q^y * r^z * s^w, with x, y, z, w >= 1,
where p, q, r, s are distinct primes. Let's indicate with C the remaining portion of k coprime to p, q, r and s (which could be also 1). Then in case (1) we can construct two factorizations, the first having factors (p*q*C) and (p^(x-1) * q^(y-1)), and the second having factors (p^x * C) and (q^y) that are guaranteed to satisfy the condition that no factor in the other factorization divides any of the factors of the other factorization. For case (2) pairs like {(p * q^y * C), (p^(x-1) * r^z)} and {(p^x * C), (q^y * r^z)}, and for case (3) pairs like {(p^x * q^y * C), (r^z * s^w)} and {(p^x * r^z * C), (q^y * s^w)} offer similar examples, therefore a(n) > 0 for all such cases.
(End)

Examples

			The a(120) = 2 pairs of such factorizations:
   (6*20)|(8*15)
   (8*15)|(10*12)
The a(144) = 3 pairs of factorizations:
   (6*24)|(9,16)
   (8*18)|(12*12)
   (9*16)|(12*12)
The a(210) = 3 pairs of factorizations:
   (6*35)|(10*21)
   (6*35)|(14*15)
  (10*21)|(14*15)
[Note that 210 is the first squarefree number obtaining nonzero value]
The a(240) = 4 pairs of factorizations:
   (6*40)|(15*16)
   (8*30)|(12*20)
  (10*24)|(15*16)
  (12*20)|(15*16)
The a(1728) = 14 pairs of factorizations:
    (6*6*48)|(27*64)
   (6*12*24)|(27*64)
     (6*288)|(27*64)
    (8*8*27)|(12*12*12)
  (12*12*12)|(27*64)
  (12*12*12)|(32*54)
    (12*144)|(27*64)
    (12*144)|(32*54)
    (16*108)|(24*72)
     (18*96)|(27*64)
     (24*72)|(27*64)
     (24*72)|(32*54)
     (27*64)|(36*48)
     (32*54)|(36*48)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[Subsets[facs[n],{2}],And[!Or@@Divisible@@@Tuples[#],!Or@@Divisible@@@Reverse/@Tuples[#]]&]],{n,100}]
  • PARI
    factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z,Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf,d); z = factorizations(n/d, d, newf, z))); (z));
    is_ndf_pair(fac1,fac2) = { for(i=1,#fac1,for(j=1,#fac2,if(!(fac1[i]%fac2[j])||!(fac2[j]%fac1[i]),return(0)))); (1); };
    number_of_ndfpairs(z) = sum(i=1,#z,sum(j=i+1,#z,is_ndf_pair(z[i],z[j])));
    A322437(n) = number_of_ndfpairs(Vec(factorizations(n))); \\ Antti Karttunen, Dec 10 2020

Formula

For n > 0, a(A002110(n)) = A322441(n)/2 = A339626(n). - Antti Karttunen, Dec 10 2020

Extensions

Data section extended up to a(120) and more examples added by Antti Karttunen, Dec 10 2020

A322441 Number of pairs of set partitions of {1,...,n} where no block of one is a subset or equal to any block of the other.

Original entry on oeis.org

1, 0, 0, 0, 6, 60, 630, 9660, 192906
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Comments

For any pair (X,Y) meeting the requirement, so does the pair (Y,X) which must be distinct from (X,Y), except for X = Y = {} when n = 0. Therefore all a(n) are even for n > 0. - M. F. Hasler, Dec 30 2020

Examples

			The a(4) = 6 pairs of set partitions:
  {{1,2},{3,4}} and {{1,3},{2,4}},
  {{1,2},{3,4}} and {{1,4},{2,3}},
  {{1,3},{2,4}} and {{1,2},{3,4}},
  {{1,3},{2,4}} and {{1,4},{2,3}},
  {{1,4},{2,3}} and {{1,2},{3,4}},
  {{1,4},{2,3}} and {{1,3},{2,4}}.
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    stabQ[u_]:=stabQ[u,SubsetQ];stabQ[u_,Q_]:=!Apply[Or,Outer[#1=!=#2&&Q[#1,#2]&,u,u,1],{0,1}];
    Table[Length[Select[Tuples[sps[Range[n]],2],And[UnsameQ@@Join@@#,stabQ[Join@@#]]&]],{n,6}]

A322436 Number of pairs of factorizations of n into factors > 1 where no factor of the second properly divides any factor of the first.

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 5, 3, 3, 1, 8, 1, 3, 3, 11, 1, 8, 1, 8, 3, 3, 1, 18, 3, 3, 5, 8, 1, 12, 1, 15, 3, 3, 3, 31, 1, 3, 3, 18, 1, 12, 1, 8, 8, 3, 1, 39, 3, 8, 3, 8, 1, 18, 3, 18, 3, 3, 1, 42, 1, 3, 8, 33, 3, 12, 1, 8, 3, 12, 1, 67, 1, 3, 8, 8, 3, 12, 1, 39, 11
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(12) = 8 pairs of factorizations:
  (2*2*3)|(2*2*3)
  (2*2*3)|(2*6)
  (2*2*3)|(3*4)
  (2*2*3)|(12)
    (2*6)|(12)
    (3*4)|(3*4)
    (3*4)|(12)
     (12)|(12)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    divpropQ[x_,y_]:=And[x!=y,Divisible[x,y]];
    Table[Length[Select[Tuples[facs[n],2],!Or@@divpropQ@@@Tuples[#]&]],{n,100}]

A322438 Number of unordered pairs of factorizations of n into factors > 1 where no factor of one properly divides any factor of the other.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 4
Offset: 1

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Comments

First differs from A322437 at a(144) = 4, A322437(144) = 3.
First differs from A379958 at a(120) = 2, A379958(120) = 1.

Examples

			The a(240) = 5 pairs of factorizations::
  (4*4*15)|(4*6*10)
    (6*40)|(15*16)
    (8*30)|(12*20)
   (10*24)|(15*16)
   (12*20)|(15*16)
		

Crossrefs

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    divpropQ[x_,y_]:=And[x!=y,Divisible[x,y]];
    Table[Length[Select[Subsets[facs[n],{2}],And[!Or@@divpropQ@@@Tuples[#],!Or@@divpropQ@@@Reverse/@Tuples[#]]&]],{n,100}]
  • PARI
    factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z,Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf,d); z = factorizations(n/d, d, newf, z))); (z));
    is_proper_ndf_pair(fac1,fac2) = { for(i=1,#fac1,for(j=1,#fac2,if((fac1[i]!=fac2[j]) && (!(fac1[i]%fac2[j]) || !(fac2[j]%fac1[i])),return(0)))); (1); };
    number_of_proper_ndfpairs(z) = sum(i=1,#z,sum(j=i+1,#z,is_proper_ndf_pair(z[i],z[j])));
    A322438(n) = number_of_proper_ndfpairs(Vec(factorizations(n))); \\ Antti Karttunen, Jan 24 2025

Extensions

Data section extended up to a(144) by Antti Karttunen, Jan 24 2025

A322440 Number of pairs of integer partitions of n where every part of the first is less than every part of the second.

Original entry on oeis.org

1, 0, 1, 2, 5, 7, 16, 20, 40, 55, 97, 124, 235, 287, 482, 654, 1033, 1318, 2137, 2676, 4157, 5439, 7891, 10144, 15280, 19171, 27336, 35652, 49756, 63150, 89342, 111956, 154400, 197413, 264572, 336082, 456724, 568932, 756065, 959566, 1261803, 1576355, 2078267
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(5) = 16 pairs of integer partitions:
      (51)|(6)
      (42)|(6)
     (411)|(6)
      (33)|(6)
     (321)|(6)
    (3111)|(6)
     (222)|(6)
     (222)|(33)
    (2211)|(6)
    (2211)|(33)
   (21111)|(6)
   (21111)|(33)
  (111111)|(6)
  (111111)|(42)
  (111111)|(33)
  (111111)|(222)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          g(n, i-1) +g(n-i, min(i, n-i)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(g(n-i, min(n-i, i))*b(n, i+1), i=1..n))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 09 2018
  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions[n],2],Max@@First[#]n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := a[n] = If[n==0, 1, Sum[g[n-i, Min[n-i, i]]*b[n, i+1], {i, 1, n}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n-1} A026820(n, k) * A026794(n, k + 1).

A319884 Number of unordered pairs of set partitions of {1,...,n} where every block of one is a proper subset or proper superset of some block of the other.

Original entry on oeis.org

1, 0, 1, 7, 50, 481, 5667, 78058, 1238295, 22314627, 451354476, 10148011215, 251584513215, 6831141750512, 201976943666357, 6470392653260939, 223595676728884394, 8302299221314559877, 330075531021130110015, 14006780163088113914026, 632606447496264724088803
Offset: 0

Views

Author

Gus Wiseman, Dec 09 2018

Keywords

Examples

			The a(3) = 7 pairs of set partitions:
  (1)(2)(3)|(123)
    (1)(23)|(12)(3)
    (1)(23)|(13)(2)
    (1)(23)|(123)
    (12)(3)|(13)(2)
    (12)(3)|(123)
    (13)(2)|(123)
		

Crossrefs

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    costabstrQ[s_,t_]:=And@@Cases[s,x_:>Select[t,x!=#&&(SubsetQ[x,#]||SubsetQ[#,x])&]!={}];
    Table[Length[Select[Subsets[sps[Range[n]],{2}],And[costabstrQ@@#,costabstrQ@@Reverse[#]]&]],{n,5}]
  • PARI
    F(x)={my(bell=(exp(y*(exp(x) - 1))  )); subst(serlaplace( serconvol(bell, bell)), y, exp(exp(x) - 1)-1)}
    seq(n) = {my(x=x + O(x*x^n)); Vec(serlaplace( 1 + exp( 2*(exp(exp(x) - 1) - exp(x)) ) * F(x) )/2)} \\ Andrew Howroyd, Jan 19 2024
    
  • PARI
    \\ 2nd prog, following formula - slightly slower
    D(n,y) = (exp(2*y)/(1 + y)^2) * sum(k=0,n, x^k*sum(j=0, k, stirling(k,j,2) * y^j)^2/k!, O(x*x^n))
    seq(n) = Vec(serlaplace((1/2)*(1 + D(n, exp(exp(x + O(x*x^n)) - 1) - 1)))) \\ Andrew Howroyd, Jan 20 2024

Formula

E.g.f.: (1/2)*(1 + D(x, exp(exp(x) - 1) - 1) ) where D(x,y) = (exp(2*y)/(1 + y)^2) * Sum_{k>=0} x^k*(Sum_{j=0..k} Stirling2(k,j)*y^j)^2/k!. - Andrew Howroyd, Jan 20 2024

Extensions

a(8) onwards from Andrew Howroyd, Jan 19 2024
Showing 1-9 of 9 results.