A322437 Number of unordered pairs of factorizations of n into factors > 1 where no factor of one divides any factor of the other.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
Offset: 1
Keywords
Examples
The a(120) = 2 pairs of such factorizations: (6*20)|(8*15) (8*15)|(10*12) The a(144) = 3 pairs of factorizations: (6*24)|(9,16) (8*18)|(12*12) (9*16)|(12*12) The a(210) = 3 pairs of factorizations: (6*35)|(10*21) (6*35)|(14*15) (10*21)|(14*15) [Note that 210 is the first squarefree number obtaining nonzero value] The a(240) = 4 pairs of factorizations: (6*40)|(15*16) (8*30)|(12*20) (10*24)|(15*16) (12*20)|(15*16) The a(1728) = 14 pairs of factorizations: (6*6*48)|(27*64) (6*12*24)|(27*64) (6*288)|(27*64) (8*8*27)|(12*12*12) (12*12*12)|(27*64) (12*12*12)|(32*54) (12*144)|(27*64) (12*144)|(32*54) (16*108)|(24*72) (18*96)|(27*64) (24*72)|(27*64) (24*72)|(32*54) (27*64)|(36*48) (32*54)|(36*48)
Links
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; Table[Length[Select[Subsets[facs[n],{2}],And[!Or@@Divisible@@@Tuples[#],!Or@@Divisible@@@Reverse/@Tuples[#]]&]],{n,100}]
-
PARI
factorizations(n, m=n, f=List([]), z=List([])) = if(1==n, listput(z,Vec(f)); z, my(newf); fordiv(n, d, if((d>1)&&(d<=m), newf = List(f); listput(newf,d); z = factorizations(n/d, d, newf, z))); (z)); is_ndf_pair(fac1,fac2) = { for(i=1,#fac1,for(j=1,#fac2,if(!(fac1[i]%fac2[j])||!(fac2[j]%fac1[i]),return(0)))); (1); }; number_of_ndfpairs(z) = sum(i=1,#z,sum(j=i+1,#z,is_ndf_pair(z[i],z[j]))); A322437(n) = number_of_ndfpairs(Vec(factorizations(n))); \\ Antti Karttunen, Dec 10 2020
Formula
Extensions
Data section extended up to a(120) and more examples added by Antti Karttunen, Dec 10 2020
Comments