A322439 Number of ordered pairs of integer partitions of n where no part of the first is greater than any part of the second.
1, 1, 3, 5, 11, 15, 33, 42, 82, 114, 195, 258, 466, 587, 954, 1317, 2021, 2637, 4124, 5298, 7995, 10565, 15075, 19665, 28798, 36773, 51509, 67501, 93060, 119299, 165589, 209967, 285535, 366488, 487536, 622509, 833998, 1048119, 1380410, 1754520, 2291406, 2876454
Offset: 0
Keywords
Examples
The a(5) = 15 pairs of integer partitions: (5)|(5) (41)|(5) (32)|(5) (311)|(5) (221)|(5) (221)|(32) (2111)|(5) (2111)|(32) (11111)|(5) (11111)|(41) (11111)|(32) (11111)|(311) (11111)|(221) (11111)|(2111) (11111)|(11111)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Maple
g:= proc(n, i) option remember; `if`(n=0 or i=1, 1, g(n, i-1) +g(n-i, min(i, n-i))) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i>n, 0, b(n, i+1)+b(n-i, i))) end: a:= proc(n) option remember; `if`(n=0, 1, add(g(n, i)*b(n-i, i), i=1..n)) end: seq(a(n), n=0..50); # Alois P. Heinz, Dec 09 2018
-
Mathematica
Table[Length[Select[Tuples[IntegerPartitions[n],2],Max@@First[#]<=Min@@Last[#]&]],{n,20}] (* Second program: *) g[n_, i_] := g[n, i] = If[n == 0 || i == 1, 1, g[n, i - 1] + g[n - i, Min[i, n - i]]]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i>n, 0, b[n, i+1] + b[n-i, i]]]; a[n_] := a[n] = If[n == 0, 1, Sum[g[n, i]*b[n - i, i], {i, 1, n}]]; a /@ Range[0, 50] (* Jean-François Alcover, May 17 2021, after Alois P. Heinz *)