cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322440 Number of pairs of integer partitions of n where every part of the first is less than every part of the second.

Original entry on oeis.org

1, 0, 1, 2, 5, 7, 16, 20, 40, 55, 97, 124, 235, 287, 482, 654, 1033, 1318, 2137, 2676, 4157, 5439, 7891, 10144, 15280, 19171, 27336, 35652, 49756, 63150, 89342, 111956, 154400, 197413, 264572, 336082, 456724, 568932, 756065, 959566, 1261803, 1576355, 2078267
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2018

Keywords

Examples

			The a(5) = 16 pairs of integer partitions:
      (51)|(6)
      (42)|(6)
     (411)|(6)
      (33)|(6)
     (321)|(6)
    (3111)|(6)
     (222)|(6)
     (222)|(33)
    (2211)|(6)
    (2211)|(33)
   (21111)|(6)
   (21111)|(33)
  (111111)|(6)
  (111111)|(42)
  (111111)|(33)
  (111111)|(222)
		

Crossrefs

Programs

  • Maple
    g:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          g(n, i-1) +g(n-i, min(i, n-i)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i>n, 0, b(n, i+1)+b(n-i, i)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(g(n-i, min(n-i, i))*b(n, i+1), i=1..n))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Dec 09 2018
  • Mathematica
    Table[Length[Select[Tuples[IntegerPartitions[n],2],Max@@First[#]n, 0, b[n, i+1] + b[n-i, i]]];
    a[n_] := a[n] = If[n==0, 1, Sum[g[n-i, Min[n-i, i]]*b[n, i+1], {i, 1, n}]];
    a /@ Range[0, 50] (* Jean-François Alcover, May 10 2021, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n-1} A026820(n, k) * A026794(n, k + 1).