A322456 Triangle of Touchard's chord enumerating polynomial coefficients [x^k] P_n(x).
1, 1, 1, 1, 3, 1, 4, 10, 12, 1, 5, 15, 35, 60, 77, 55, 1, 6, 21, 56, 126, 240, 391, 546, 624, 546, 273, 1, 7, 28, 84, 210, 462, 910, 1619, 2618, 3857, 5138, 6125, 6405, 5600, 3740, 1428, 1, 8, 36, 120, 330, 792, 1716, 3416, 6308, 10872, 17564, 26664, 38030, 50864, 63580, 73848, 78880, 76296, 65076, 46512, 25194, 7752
Offset: 0
Examples
The triangle starts 1; 1; 1; 1, 3; 1, 4, 10, 12; 1, 5, 15, 35, 60, 77, 55; 1, 6, 21, 56, 126, 240, 391, 546, 624, 546, 273; 1, 7, 28, 84, 210, 462, 910, 1619, 2618, 3857, 5138, 6125, 6405, 5600, 3740, 1428;
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..4090 (rows 0..30)
- J. Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math., 4 (1952), 2-25, P_n(x).
Programs
-
PARI
\\ M(n) is the n-th row of A067311 as a polynomial. M(n)={1/(1-y)^n*sum(k=0, n, (-1)^k * ( binomial(2*n, n-k)-binomial(2*n, n-k-1)) * y^(k*(k+1)/2) )} RowGfs(n)={my(g=sum(k=0,n,M(k)*x^k,O(x*x^n))); Vec(sqrt((x/serreverse( x*g^2 ))))} { my(A=RowGfs(7)); for(i=1, #A, print(Vec(A[i]/y^max(0,i-2)))) } \\ Andrew Howroyd, Nov 22 2024
Formula
T(n,k) = [x^k] P_n(x), k=n*(n-1)/2 down to k=n-1.
G.f.: A(x,y) satisfies: A(x*B(x,y)^2,y) = B(x,y) where B(x,y) is the g.f. of A067311. - Andrew Howroyd, Nov 22 2024
Extensions
a(0)=1 prepended by Andrew Howroyd, Nov 22 2024
Comments