A322459 Sum of n-th powers of the roots of x^3 + 7*x^2 + 14*x + 7.
3, -7, 21, -70, 245, -882, 3234, -12005, 44933, -169099, 638666, -2417807, 9167018, -34790490, 132119827, -501941055, 1907443237, -7249766678, 27557748813, -104759610858, 398257159370, -1514069805269, 5756205681709, -21884262613787, 83201447389466, -316323894905207
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-7,-14,-7).
Programs
-
Mathematica
LinearRecurrence[{-7, -14, -7},{3, -7, 21}, 50] (* Amiram Eldar, Dec 09 2018 *) CoefficientList[Series[(3+14*x+14*x^2)/(1+7*x+14*x^2+7*x^3), {x, 0, 25}], x] (* G. C. Greubel, Dec 16 2018 *)
-
PARI
Vec((3 + 14*x + 14*x^2) / (1 + 7*x + 14*x^2 + 7*x^3) + O(x^40)) \\ Colin Barker, Dec 09 2018
-
PARI
polsym(x^3 + 7*x^2 + 14*x + 7, 25) \\ Joerg Arndt, Dec 17 2018
Formula
a(n) = (sqrt(7))^n*( (A/(2*B*C))^n + (B/(2*C*A))^n + (C/(2*A*B))^n ).
a(n) = -7*a(n-1) - 14*a(n-2) - 7*a(n-3) for n>2.
G.f.: (3 + 14*x + 14*x^2) / (1 + 7*x + 14*x^2 + 7*x^3). - Colin Barker, Dec 09 2018
Comments