A322460 Sum of n-th powers of the roots of x^3 + 95*x^2 - 88*x - 1.
3, -95, 9201, -882452, 84642533, -8118687210, 778722945402, -74693039645137, 7164358266796181, -687186244111463849, 65913082025027484446, -6322208017501153044901, 606409425694567846432994, -58165183833442021851601272, 5579050171430096545235179411
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (-95,88,1).
Crossrefs
Programs
-
Maple
seq(coeff(series((3+190*x-88*x^2)/(1+95*x-88*x^2-x^3),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Dec 11 2018
-
Mathematica
LinearRecurrence[{-95, 88, 1}, {3, -95, 9201}, 50] (* Amiram Eldar, Dec 09 2018 *)
-
PARI
Vec((3 + 190*x - 88*x^2) / (1 + 95*x - 88*x^2 - x^3) + O(x^15)) \\ Colin Barker, Dec 09 2018
-
PARI
polsym(x^3 + 95*x^2 - 88*x - 1, 25) \\ Joerg Arndt, Dec 17 2018
Formula
a(n) = (A^4/(B*C^3))^n + (B^4/(C*A^3))^n + (C^4/(A*B^3))^n.
a(n) = -95*a(n-1) + 88*a(n-2) + a(n-3) for n>2.
G.f.: (3 + 190*x - 88*x^2) / (1 + 95*x - 88*x^2 - x^3). - Colin Barker, Dec 09 2018
Comments