cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322482 Table read by downward antidiagonals: T(n,k) is the greatest divisor of n which is a unitary divisor of k.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 2, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 7, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Dec 11 2018

Keywords

Comments

This relation was defined by Cohen in 1960.
The common notation for T(n,k) is (n,k)*.
If T(n,k) = 1 then n is said to be semi-prime to k.
In general T(n,k) != T(k,n).
The relation is used to define semi-unitary divisors (A322483).

Examples

			The table starts
  1  1  1  1  1  1  1  1  1  1 ...
  1  2  1  1  1  2  1  1  1  2 ...
  1  1  3  1  1  3  1  1  1  1 ...
  1  2  1  4  1  2  1  1  1  2 ...
  1  1  1  1  5  1  1  1  1  5 ...
  1  2  3  1  1  6  1  1  1  2 ...
  1  1  1  1  1  1  7  1  1  1 ...
  1  2  1  4  1  2  1  8  1  2 ...
  1  1  3  1  1  3  1  1  9  1 ...
  1  2  1  1  5  2  1  1  1 10 ...
  ...
The triangle formed by the antidiagonals starts
  1
  1 1
  1 2 1
  1 1 1 1
  1 1 3 2 1
  1 1 1 1 1 1
  1 2 1 4 1 2 1
  1 1 3 1 1 3 1 1
  1 1 1 2 5 1 1 2 1
  ...
		

References

  • J. Sandor and B. Crstici, Handbook of Number Theory, II, Springer Verlag, 2004, chapter 3.6, pp. 281.

Crossrefs

Cf. A050873 (gcd), A165430 (unitary gcd).

Programs

  • Mathematica
    udiv[n_] := Select[Divisors[n], GCD[#,n/#] == 1 &]; semiuGCD[a_, b_] := Max[ Intersection[Divisors[a], udiv[b]]]; Table[semiuGCD[n, k], {n,1,20}, {k, n-1, 1, -1 }] // Flatten
  • PARI
    udivisors(n) = {my(d=divisors(n)); select(x->(gcd(x, n/x)==1), d);}
    T(n,k) = {my(dn = divisors(n), udk = udivisors(k)); vecmax(setintersect(dn, udk));} \\ Michel Marcus, Dec 14 2018

Formula

T(1,n) = T(n,1) = 1.
T(n,n) = n.