A322482 Table read by downward antidiagonals: T(n,k) is the greatest divisor of n which is a unitary divisor of k.
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 1, 1, 2, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 7, 2, 1
Offset: 1
Examples
The table starts 1 1 1 1 1 1 1 1 1 1 ... 1 2 1 1 1 2 1 1 1 2 ... 1 1 3 1 1 3 1 1 1 1 ... 1 2 1 4 1 2 1 1 1 2 ... 1 1 1 1 5 1 1 1 1 5 ... 1 2 3 1 1 6 1 1 1 2 ... 1 1 1 1 1 1 7 1 1 1 ... 1 2 1 4 1 2 1 8 1 2 ... 1 1 3 1 1 3 1 1 9 1 ... 1 2 1 1 5 2 1 1 1 10 ... ... The triangle formed by the antidiagonals starts 1 1 1 1 2 1 1 1 1 1 1 1 3 2 1 1 1 1 1 1 1 1 2 1 4 1 2 1 1 1 3 1 1 3 1 1 1 1 1 2 5 1 1 2 1 ...
References
- J. Sandor and B. Crstici, Handbook of Number Theory, II, Springer Verlag, 2004, chapter 3.6, pp. 281.
Links
- Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Mathematische Zeitschrift, Vol. 74, No. 1 (1960), pp. 66-80.
- M. V. Subbarao On some arithmetic convolutions, The theory of arithmetic functions, Springer, Berlin, Heidelberg, 1972, pp. 247-271.
- D. Suryanarayana and V. Siva Rama Prasad, Sum functions of k-ary and semi-k-ary divisors, Journal of the Australian Mathematical Society, Vol. 15, No. 2 (1973), pp. 148-162.
Programs
-
Mathematica
udiv[n_] := Select[Divisors[n], GCD[#,n/#] == 1 &]; semiuGCD[a_, b_] := Max[ Intersection[Divisors[a], udiv[b]]]; Table[semiuGCD[n, k], {n,1,20}, {k, n-1, 1, -1 }] // Flatten
-
PARI
udivisors(n) = {my(d=divisors(n)); select(x->(gcd(x, n/x)==1), d);} T(n,k) = {my(dn = divisors(n), udk = udivisors(k)); vecmax(setintersect(dn, udk));} \\ Michel Marcus, Dec 14 2018
Formula
T(1,n) = T(n,1) = 1.
T(n,n) = n.
Comments