cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322494 Number A(n,k) of tilings of a k X n rectangle using V (2m+1)-ominoes (m >= 0) in standard orientation; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 5, 8, 5, 1, 1, 1, 1, 8, 18, 18, 8, 1, 1, 1, 1, 13, 44, 68, 44, 13, 1, 1, 1, 1, 21, 107, 233, 233, 107, 21, 1, 1, 1, 1, 34, 257, 838, 1262, 838, 257, 34, 1, 1, 1, 1, 55, 621, 2989, 6523, 6523, 2989, 621, 55, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 12 2018

Keywords

Comments

The shapes of the tiles are:
._.
._. | |
._. | | | |
.. | |. | |.. | |.._.
|| |__| |___| |_____| ... .
.
The sequence of column k (or row k) satisfies a linear recurrence with constant coefficients of order 2^(k-1) for k>0.

Examples

			A(3,3) = 8:
  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.  ._____.
  |_|_|_|  | |_|_|  |_|_|_|  |_| |_|  |_|_|_|  |_| |_|  | |_|_|  | | |_|
  |_|_|_|  |___|_|  | |_|_|  |_|___|  |_| |_|  | |___|  | |_|_|  | |___|
  |_|_|_|  |_|_|_|  |___|_|  |_|_|_|  |_|___|  |___|_|  |_____|  |_____|.
.
Square array A(n,k) begins:
  1, 1,  1,   1,     1,      1,       1,        1,         1, ...
  1, 1,  1,   1,     1,      1,       1,        1,         1, ...
  1, 1,  2,   3,     5,      8,      13,       21,        34, ...
  1, 1,  3,   8,    18,     44,     107,      257,       621, ...
  1, 1,  5,  18,    68,    233,     838,     2989,     10687, ...
  1, 1,  8,  44,   233,   1262,    6523,    34468,    181615, ...
  1, 1, 13, 107,   838,   6523,   51420,   396500,   3086898, ...
  1, 1, 21, 257,  2989,  34468,  396500,  4577274,  52338705, ...
  1, 1, 34, 621, 10687, 181615, 3086898, 52338705, 888837716, ...
		

Crossrefs

Columns (or rows) k=0+1,2-10 give: A000012, A000045(n+1), A322496, A322497, A322498, A322499, A322500, A322501, A322502, A322503.
Main diagonal gives A322495.
Cf. A226444.

Programs

  • Maple
    b:= proc(n, l) option remember; local k, m, r;
          if n=0 or l=[] then 1
        elif min(l)>0 then (t-> b(n-t, map(h->h-t, l)))(min(l))
        elif l[-1]=n then b(n, subsop(-1=[][], l))
        else for k while l[k]>0 do od; r:= 0;
             for m from 0 while k+m<=nops(l) and l[k+m]=0 and n>m do
               r:= r+b(n, [l[1..k-1][], 1$m, m+1, l[k+m+1..nops(l)][]])
             od; r
          fi
        end:
    A:= (n, k)-> b(max(n, k), [0$min(n, k)]):
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, l_] := b[n, l] = Module[{k, m, r}, Which[n == 0 || l == {}, 1, Min[l] > 0, Function[t, b[n-t, l-t]][Min[l]], l[[-1]] == n, b[n, ReplacePart[ l, -1 -> Nothing]], True, For[k=1, l[[k]] > 0, k++]; r = 0; For[m=0, k+m <= Length[l] && l[[k+m]] == 0 && n>m, m++, r = r + b[n, Join[l[[1 ;; k-1]], Array[1&, m], {m+1}, l[[k+m+1 ;; Length[l]]]]]]; r]];
    A[n_, k_] := b[Max[n, k], Array[0&, Min[n, k]]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 18 2018, after Alois P. Heinz *)