A322508 Factorial expansion of Gamma(1/3) = Sum_{n>=1} a(n)/n!.
2, 1, 1, 0, 1, 2, 5, 6, 7, 2, 1, 8, 5, 7, 9, 12, 13, 10, 10, 13, 17, 18, 5, 1, 6, 3, 26, 13, 20, 29, 8, 31, 27, 19, 21, 27, 5, 14, 12, 3, 9, 37, 34, 40, 14, 29, 35, 12, 27, 4, 36, 22, 24, 11, 31, 37, 12, 5, 47, 14, 22, 18, 51, 20, 51, 4, 15, 54, 61, 26, 55, 2, 6, 73, 7, 17, 66, 54, 27
Offset: 1
Keywords
Examples
Gamma(1/3) = 2 + 1/2! + 1/3! + 0/4! + 1/5! + 2/6! + 5/7! + 6/8! + ...
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(250)); [Floor(Gamma(1/3))] cat [Floor(Factorial(n)*Gamma(1/3)) - n*Floor(Factorial((n-1))*Gamma(1/3)) : n in [2..80]];
-
Mathematica
With[{b = Gamma[1/3]}, Table[If[n==1, Floor[b], Floor[n!*b] - n*Floor[(n-1)!*b]], {n, 1, 100}]]
-
PARI
default(realprecision, 250); b = gamma(1/3); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
-
Sage
b=gamma(1/3); def a(n): if (n==1): return floor(b) else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b)) [a(n) for n in (1..80)]