cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A322551 Primes indexed by squarefree semiprimes.

Original entry on oeis.org

13, 29, 43, 47, 73, 79, 101, 137, 139, 149, 163, 167, 199, 233, 257, 269, 271, 293, 313, 347, 373, 389, 421, 439, 443, 449, 467, 487, 491, 499, 577, 607, 631, 647, 653, 673, 677, 727, 751, 757, 811, 821, 823, 829, 839, 907, 929, 937, 947, 983, 1051, 1061, 1093
Offset: 1

Views

Author

Gus Wiseman, Dec 15 2018

Keywords

Comments

A squarefree semiprime is a product of two distinct prime numbers.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}. This sequence lists all MM-numbers of non-loop edges.

Examples

			The sequence of edges whose MM-numbers belong to the sequence begins: {{1,2}}, {{1,3}}, {{1,4}}, {{2,3}}, {{2,4}}, {{1,5}}, {{1,6}}, {{2,5}}, {{1,7}}, {{3,4}}, {{1,8}}, {{2,6}}, {{1,9}}, {{2,7}}, {{3,5}}, {{2,8}}.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],PrimeOmega[#]==1&&PrimeOmega[PrimePi[#]]==2&&SquareFreeQ[PrimePi[#]]&]
  • PARI
    isok(p) = isprime(p) && (ip=primepi(p)) && (omega(ip)==2) && (bigomega(ip) == 2); \\ Michel Marcus, Dec 16 2018