A322510 a(1) = 0, and for any n > 0, a(2*n) = a(n) + k(n) and a(2*n+1) = a(n) - k(n) where k(n) is the least positive integer not leading to a duplicate term in sequence a.
0, 1, -1, 4, -2, 2, -4, 5, 3, 6, -10, 7, -3, 8, -16, 15, -5, 12, -6, 19, -7, -9, -11, 22, -8, 9, -15, 28, -12, -14, -18, 16, 14, 10, -20, 13, 11, 17, -29, 20, 18, 21, -35, 23, -41, 24, -46, 57, -13, 26, -42, 35, -17, 25, -55, 29, 27, 30, -54, 31, -59, 32, -68
Offset: 1
Examples
The first terms, alongside k(n) and associate children, are: n a(n) k(n) a(2*n) a(2*n+1) -- ---- ---- ------ -------- 1 0 1 1 -1 2 1 3 4 -2 3 -1 3 2 -4 4 4 1 5 3 5 -2 8 6 -10 6 2 5 7 -3 7 -4 12 8 -16 8 5 10 15 -5 9 3 9 12 -6 10 6 13 19 -7
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
lista(nn) = my (a=[0], s=Set(0)); for (n=1, ceil(nn/2), for (k=1, oo, if (!setsearch(s, a[n]+k) && !setsearch(s, a[n]-k), a=concat(a, [a[n]+k, a[n]-k]); s=setunion(s, Set([a[n]+k, a[n]-k])); break))); a[1..nn]
Formula
a(n) = (a(2*n) + a(2*n+1))/2.
Comments